• 제목/요약/키워드: Anisotropic Nd-Fe-B magnets

검색결과 25건 처리시간 0.05초

EFFECT OF TEMPERATURE ON THE PLASTIC DEFORMABILITY OF GAS ATOMIZED NdFeB ANISOTROPIC MAGNETS

  • JU-YOUNG CHO;YONG-HO-CHOA;SUN-WOO-NAM;RASHEED MOHAMMAD ZARAR;TAEK-SOO KIM
    • Archives of Metallurgy and Materials
    • /
    • 제65권4호
    • /
    • pp.1293-1296
    • /
    • 2020
  • NdFeB anisotropic sintered permanent magnets are typically fabricated by strip casting or melt spinning. In this study, the plastic deformability of an NdFeB alloy was investigated to study the possibility of fabricating anisotropic sintered magnets using gas atomized powders. The results show that the stoichiometric composition Nd12Fe82B6 softens at high temperatures. The aspect ratio and orientation factor of Nd12Fe82B6 billets after plastic deformation were found to increase with increasing plastic deformation temperature, particularly above 800℃. This confirms that softening at high temperatures can lead to plastic deformation of Nd2Fe14B hard magnetic phases.

Application of the current-applied pressure-assisted method for anisotropic NdFeB magnets

  • Kim, H. T.;Kim, Y. B.;Kim, H. S.
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2000년도 International Symposium on Magnetics The 2000 Fall Conference
    • /
    • pp.381-388
    • /
    • 2000
  • By applying Current-applied Pressure-Assisted process, we could obtain full dense isotropic and anisotropic NdFeB magnets from rapidly quenched MQP-A powder. The Nd contents are found to play an important role during the CA-press and CA-deformation process. The (BH)$\sub$max/ of CA-pressed and CA-deformed magnets are 131 kJ/㎥(16.5 MGOe) and 352 kJ/㎥(44.2 MGOe), respectively. The texture of CA-deformed anisotropic NdFeB magnets with thickness reduction was investigated by pole figure, and the (006) texture was increase with the increase of thickness reduction. With the increment in thickness reduction from 50%, 60% to 80%, W$\sub$50/ decreases from 76$\^$$^{\circ}$/, 62.5$\^$$^{\circ}$/ to 17$\^$$^{\circ}$/, respectively.

  • PDF

Application of the Current-applied Pressure-assisted Method for Anisotropic NdFeB Magnets

  • Kim, H.T.;Kim, Y.B.;Kim, H.S.
    • Journal of Magnetics
    • /
    • 제5권4호
    • /
    • pp.130-134
    • /
    • 2000
  • Using the current-applied pressure-assisted (CAPk) process, we could obtain fully dense isotropic and anisotropic NdFeB magnets from rapidly quenched MQP-A powder. The Nd content is found to play an important role during the current applied (CA)-pressing and CA-deformation processes. The $(BH)_max$ of CA-pressed and CA-deformed magnets are 131 kJ/$m^3$ (16.5 MGOe) and 352 kJ/$m^3$(44.2 MGOe), respectively. The change in texture of CA-deformed anisotropic NdFeB magnets with thickness reduction was investigated by pole figures and the (006) texture was found to increase with greater thickness reductions. As the thickness reduction increases from 50% to 60% to 80%, $W_50$ (the average angle of the contour with 50% intensity) decreases from $76^\circ$to $62.5^\circ$to $17^\circ$.

  • PDF

Preparation and Magnetic Properties of MnBi Alloy and its Hybridization with NdFeB

  • Truong, Nguyen Xuan;Vuong, Nguyen Van
    • Journal of Magnetics
    • /
    • 제20권4호
    • /
    • pp.336-341
    • /
    • 2015
  • MnBi alloys were fabricated by arc melting and annealing at 573 K. The heat treatment enhanced the content of the low-temperature phase (LTP) of MnBi up to 83 wt%. The Bi-excess assisted LTP MnBi alloys were used in the hybridization with the Nd-Fe-B commercial Magnequench ribbons to form the hybrid magnets (100-x)NdFeB/xMnBi, x = 20, 30, 40, 50, and 80 wt%. The as-milled powder mixtures of Nd-Fe-B and MnBi were aligned in a magnetic field of 18 kOe and warm-compacted to anisotropic and dense bulk magnets at 573 K by 2,000 psi for 10 min. The magnetic ordering of two hard phase components strengthened by the exchange coupling enhanced the Curie temperature ($T_c$) of the magnet in comparison to that of the powder mixture sample. The prepared hybrid magnets were highly anisotropic with the ratio $M_r/M_s$ > 0.8. The exchange coupling was high, and the coercivity $_iH_c$ of the magnets was ~11-13 kOe. The maximum value of the energy product $(BH)_{max}$ was 8.4 MGOe for the magnet with x = 30%. The preparation of MnBi alloys and hybrid magnets are discussed in details.

급냉응고된 분말로부터 CAPA법으로 제조한 NdFeB 영구자석의 자기적 특성 (Magnetic Properties of NdFeB Permanent Magnets Fabricated by CAPA Process with Melt-spun Powder)

  • 김윤배;김형태;전우용;김학신
    • 한국자기학회지
    • /
    • 제11권6호
    • /
    • pp.250-255
    • /
    • 2001
  • 급냉응고법으로 제조된 NdFeB 분말로부터 Current applied(CA)-press 및 Current applied(CA)-deformation 공정에 의해 등방성 및 이방성 NdFeB 영구자석을 제조하고, 이로부터 자기적 특성을 조사하였다. 등방성 NdFeB 영구자석의 보자력은 시료에 가해지는 압력에 따라 크게 다르며, 상대적으로 높은 압력에서 보자력이 크게 나타났다. 반면 잔류자화는 시료에 가해졌던 압력 및 전류의 변화에 관계없이 거의 일정하였다. 등방성 시편인 경우 대체로 최대자기에너지적이 15MGOe이상이며, CA-deformation에 의해 40MGOe이상의 이방성 NdFeB 영구자석이 얻어졌다. 이방성 시편의 가공도가 클수록 B$_{r}$의 증가로 인하여 최대자기에너지적이 증가하였으며, 시편의 가공도가 81%일 때 44.2 MGOe의 고에너지적을 가지는 이방성 NdFeB영구자석이 얻어졌다.

  • PDF

A Oen-step Hot-forming Process for the Preparation of Anisotropic Nd-Fe-B Based Magnets

  • Yang, Jung-Pil
    • Journal of Magnetics
    • /
    • 제2권3호
    • /
    • pp.67-71
    • /
    • 1997
  • A new hot-forming process has been studied to produce anisotropic Nd-Fe-B based magnets from melt-spun ribbons. The ribbon fragments were inserted in a Cu tube and hot-deformed together with one-stroke. At a height reduction ratio of 0.44, the melt-spun ribbons were densified into a magnet with a density of 7.14 g/cm3, and showed a (BH)max of 14.6 MGOe. With further deformation, the magnets were plastically deformed with Cu tubes in the lateral direction, and crystallographic anisotropy was introduced. The magnets with a height reduction ratio of 0.75 exhibited magnetic properties of (BH)max = 32.1 MGOe, Br = 11.7 kG, and iHc = 10.6 kOe. This process shows the possibility that the conventional hot-pressing and subsequent die-upsetting for anisotropic magnets can be simplified into a one-step process.

  • PDF

Magnetic Properties of $Nd_{12}Dy_2Fe_{73.2}Co_{6.6}Ga_{0.6}B_{5.6}$ magnets fabricated by current-applied pressure-assisted method

  • Kim, H. T.;S. H. Cho;Kim, Y. B.;G. A. Kapustin;Kim, H. S.
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2002년도 동계연구발표회 논문개요집
    • /
    • pp.232-233
    • /
    • 2002
  • Nanostructed high energy Nd-Fe-B based bulk magnet can be prepared by hot-working process (hot press and die-upset) from melt-spun amorphous or nanocrystalline powder.[1] Recently, we have investigated a modified method, current-applied pressure-assisted (CAPA) process, to produce nanocrystalline isotropic and anisotropic NdFeB magnets. The process consists of current-applied pressing the melt-spun powders to obtain isotropic precursor subsequent current-applied deforming the precursor to obtain textured magnet.[2-3] (omitted)

  • PDF

Nd-Fe-B 소결자석의 소결 후 열처리 조건에 따른 미세조직 및 자기적 특성 변화 (Influence of Post-Sintering Annealing Conditions on the Microstructure and Magnetic Properties of Nd-Fe-B Magnet)

  • 정윤종;홍순직;김동환;배경훈;송기안
    • 열처리공학회지
    • /
    • 제37권1호
    • /
    • pp.9-15
    • /
    • 2024
  • Nd-Fe-B permanent magnets have been utilized on various industrial fields such as electric vehicles, generator, robots with actuator, etc, due to their outstanding magnetic properties even 10 times better than conventional magnets. Recently, there are many researches that report magnetic properties improved by controlling microstructure through adjusting alloying elements or conducting various processing. Especially, post-sintering annealing (PSA) can significantly improve the coercivity by modifying the distribution and morphology of Nd-rich phase which formed at grain boundaries. In this study, Nd-Fe-B sintered magnets were subjected to primary heat treatment followed by secondary heat treatment at 460℃, 500℃, and 540℃ to investigate the changes in microstructure and magnetic properties with the secondary heat treatment temperature. EBSD analysis was conducted to compare anisotropic characteristics. Through the SEM and TEM observation for analyzing the morphology and distribution of Nd-rich phase, we investigated the relationship between microstructure and magnetic properties of sintered Nd-Fe-B magnets.