• Title/Summary/Keyword: Anisotropic Magnetoresistance

Search Result 18, Processing Time 0.026 seconds

LARGE MAGNETORESISTANCE OF SPUTTERED BI THIN FILMS AND APPLICATION OF SPIN DEVICE

  • M. H. Jeun;Lee, K. I.;Kim, D. Y.;J. Y. Chang;K. H. Shin;S. H. Han;J. G. Ha;Lee, W. Y.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.66-67
    • /
    • 2003
  • Bismuth (Bi) has been an attractive materials for studying spin dependent transport properties because it shows very large magnetoresistance (MR) resulting from its highly anisotropic Fermi surface, low carrier concentrations, long carrier mean free path 1 and small effective carrier mass m*[1-3]. With all the intriguing properties, difficulty in fabrication of high quality Bi thin films may have prevented extensive application of Bi in magnetic field sensing and spin-injection devices. Previous works found that the surface roughness and small grain size in 100-200 nm of Bi thin film made by evaporation and sputtering are major causes of low MR. Although relatively higher MR in electrodeposited Bi followed by annealing was reported, it still suffers from rough sulfate roughness which is so severs that it is hardly able to make a field sensing and spin-injection device using conventional photolithography process.

  • PDF

Influence of Pd Concentration and Substrate Temperatures on the Magnetic Property in Permalloy Films (Pd 첨가와 기판온도 변화에 따른 퍼말로이 합금박막의 자기특성변화)

  • 이기영;송오성;윤종승;김경각
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.9
    • /
    • pp.818-821
    • /
    • 2002
  • We investigated the evolution of magnetic property with varying palladium (Pd) contents and elevating substrate temperatures up to 200 $^{\circ}C$ during dc-sputtering. We observed that saturation magnetization (Ms), remanence and anisotropic magnetoresistance (AMR) ratio decrease with Pd contents in the case of keeping the substrate temperature at 3$0^{\circ}C$. However they increase by adding 2 %Pd, then decrease above 3 %Pd when we keep the substrate temperature at 20$0^{\circ}C$. Coercivity does not change with Pd contents. Our results imply that we may tune the Ms and AMR with Pd contents and substrate temperature in permalloy films.

The Exchange Bias of NiO/NiFe Thin Eilm by the Measurement of Anisotropic Mngnetoresistance (이방성 자기저항측정을 이용한 NiO/NiFe 박막의 교환결합연구)

  • Kim, Jong-Kee;Kim, Sun-Wook;Lee, Ky-Am;Lee, Sang-Suk;Hwang, Do-Guwn
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.143-148
    • /
    • 2002
  • We report an experimental evidence of coexistence of the strong and weak exchange couplings in unidirectional NiO/NiFe (antiferromagneticlferromagnetic) bilayer thin films. The exchange bias was measured by VSM and AMR techniques and then, analyzed into the strong and weak exchange couplings by means of a regression method. In NiO(60nm)/NiFe(10nm) film, the ratio of the weak exchange coupling field over the average exchange coupling field was found to be almost unchanged within it range from 0.2 to 0.4 irrespective to the strength of an applied field. However, the ratio increased among the samples with decreasing the average exchange coupling field due to the increment of the weak exchange coupling area.

Design of Anisotropic Magnetoresistance Sensor Module for Vehicle Detection (차량감지를 위한 이방성 자기저항센서 모듈의 설계)

  • Choi, Hak-Yun;Lee, Hyeong-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.99-105
    • /
    • 2011
  • This paper is about the design of 3-axis magnetic sensor module which detects parking and moving vehicle. For the sensor module, MR Sensor from Honeywell of which maximum measurement range is ${\pm}2$[G] is used. It also consisted of amplifier and sensor filter and fabricated $30{\times}50$[mm] PCB. Fabricated sensor module produced helmholtz coil of which the length is 1.2[m] of 3-axis to know the performance. It installed sensor module at the center and measured the detected magnetic field. In result, 3-axis were detected as 0.2~0.3[mG] and the drift of the fluctuation of magnetic field was stabilized at 0.03[mG] unit. For the performance evaluation of the vehicle detection, after the entry and parking of the vehicle, variation of magnetic field was measured as 0.323~0.695[G] which the average 0.5[G] of the earth magnetic field was the center and the range of variation was confirmed as 0.37[G]. Therefore, the designed magnetic sensor can be used as the vehicle detection sensor module.

Magnetoresistance of Bi Nanowires Grown by On-Film Formation of Nanowires for In-situ Self-assembled Interconnection

  • Ham, Jin-Hee;Kang, Joo-Hoon;Noh, Jin-Seo;Lee, Woo-Young
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2010.06a
    • /
    • pp.79-79
    • /
    • 2010
  • Semimetallic bismuth (Bi) has been extensively investigated over the last decade since it exhibits very intriguing transport properties due to their highly anisotropic Fermi surface, low carrier concentration, long carrier mean free path l, and small effective carrier mass $m^*$. In particular, the great interest in Bi nanowires lies in the development of nanowire fabrication methods and the opportunity for exploring novel low-dimensional phenomena as well as practical application such as thermoelectricity[1]. In this work, we introduce a self-assembled interconnection of nanostructures produced by an on-film formation of nanowires (OFF-ON) method in order to form a highly ohmic Bi nanobridge. A Bi thin film was first deposited on a thermally oxidized Si (100) substrate at a rate of $40\;{\AA}/s$ by radio frequency (RF) sputtering at 300 K. The sputter system was kept in an ultra high vacuum (UHV) of $10^{-6}$ Torr before deposition, and sputtering was performed under an Ar gas pressure of 2m Torr for 180s. For the lateral growth of Bi nanowires, we sputtered a thin Cr (or $SiO_2$) layer on top of the Bi film. The Bi thin films were subsequently put into a custom-made vacuum furnace for thermal annealing to grow Bi nanowires by the OFF-ON method. After thermal annealing, the Bi nanowires cannot be pushed out from the topside of the Bi films due to the Cr (or $SiO_2$) layer. Instead, Bi nanowires grow laterally as a mean s of releasing the compressive stress. We fabricated a self-assembled Bi nanobridge (d=192 nm) device in-situ using OFF-ON through annealing at $250^{\circ}C$ for 10hours. From I-V measurements taken on the Bi nanobridge device, contacts to the nanobridge were found highly ohmic. The quality of the Bi nanobridge was also proved by the high MR of 123% obtained from transverse MR measurements. These results manifest the possibility of self-assembled nanowire interconnection between various nanostructures for a variety of applications and provide a simple device fabrication method to investigate transport properties on nanowires without complex patterning and etching processes.

  • PDF

Magnetic Signals Analysis for Vehicle Detection Sensor and Magnetic Field Shape (자기신호분석을 통한 차량의 감지센서와 자기형상에 관한 연구)

  • Choi, Hak-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.349-354
    • /
    • 2015
  • This paper is about utilizing magnetic sensor to measure magnetic signal and analyze the form of magnetic signal for vehicle detection. For magnetic sensor, MR sensor from Honeywell company was used, and Helmholtz coil of which 3 axis' length is 1.2 m was manufactured to check the capability of the sensor and estimate its ability to detect the magnetic field. Vehicle detection was performed in following steps: installing sensor in road lane and non-road lane; estimating magnetic field when the vehicle is run by the driver; and estimating magnetic field of 7 different vehicles with different sizes. Also, sensor was installed at SUV and small-sized vehicle's park and non-park area to analyze the form of magnetic field. Lastly, the form of magnetic field made by different parts of the vehicle was analyzed. Based on the analysis, the form of magnetic field's magnetic peak value was bigger for road lane than non-road lane, complicated form was useful to distinguish the road lane above the installed sensor and the location of the running car, and the types of vehicle could be sorted because the variance of the magnetic field was bigger for bigger size of the vehicle. Also, it was confirmed that the forms of vehicle in parts-by-parts estimates.