• Title/Summary/Keyword: Anionic surfactant

Search Result 263, Processing Time 0.021 seconds

A Study on the Development of Analytical Methods and Behaviors of Environmental Pollutants ( I ) : Elution Behavior of Monosubstituted Phenols and Benzenes by Micellar Reversed-Phase Liquid Chromatography (환경 오염물질의 정량법 개발과 거동에 관한 연구 ( I ) : 미셀 역상 액체 크로마토그래피에서 페놀과 벤젠 일치환체들의 용리거동)

  • Lee, Dai Woon;Bang, Eun Jung;Cho, Byung Yun
    • Analytical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 1993
  • The purpose of this study is to investigate the elution behavior of monosubstituted phenols and benzenes in micellar liquid chromatographic system, $C_{18}$ column-anionic surfactant, sodium dodecyl sulfate(SDS). The partition coefficients between the micellar pseudophase-water and modified stationary phase-water are calculated by the relationship between solute retention and micellar mobile phase(SDS) composition. The free energy of transfer of solute from water to micelle is also calculated from these values. There is a direct correlation between the hydrophobicity parameters in MLC and corresponding partition data for 1-octanol-water, which indicates that the hydrophobicity of molecules plays an important role in the partition for both systems and that quantitative structure activity relationships(QSAR) are available from studies on micellar partition. The other purpose of this study is to investigate methylene selectivity of alkyl homologous series through correlation between retention and the number of carbons. The correlation between hydrophobicity parameters in MLC and 1-octanol-water partition data was also observed when n-propanol was as a modifier in the mobile phase.

  • PDF

Makeup Cleansing Formulation with Lamellar Liquid Crystal Phase (라멜라 액정상 메이크업 클렌징 제형)

  • Yeo, Hye Lim;Lee, Ji Hyun;Kim, Su Ji;Noh, Minjoo;Jang, Ji Hui;Kim, Youn Joon;Yoon, Moung Seok;Yoo, Kweon Jong;Lee, Jun Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.1
    • /
    • pp.79-86
    • /
    • 2017
  • This study is related to a lamellar liquid crystal make-up cleansing formulation with a hologram-like unique appearance between two polarizing plates. Make-up cleansing formulations with a lamellar liquid crystal phase have been extensively studied for a long time, but there have been limitations in practical commercialization because of increasing turbidity and viscosity. In this study, to solve this problem, alkyl chains of surfactants were modified to increase the fluidity of the liquid crystal phase, and electrostatic repulsion force was increased by introducing anionic surfactant. The lamellar liquid crystal make-up cleansing formulation which introduced anionic surfactants can easily inhibit crystallization through electrostatic repulsion force, thereby showing excellent stability overtime, maintaining transparent appearance and viscosity. In addition, we have newly introduced an in vitro cleansing evaluation method using fluorescent material and in vivo imaging system (IVIS) for objective and quantitative cleansing ability evaluation. The excellent cleansing ability of lamellar liquid crystal cleansing formulation has been confirmed by newly developed evaluation method. On the other hand, when lamellar liquid crystal make-up cleansing formulation was placed between orthogonally arranged two polarizing plates, a specific pattern like a hologram can be observed. This phenomenon is presumably interpreted as the interference between the visible light passing through the liquid crystal formulation and the lamellar structure. The lamellar structure of cleansing formulation was confirmed by SAXS analysis, exhibiting Bragg spacing ratio of 1 : 2. The lamellar liquid crystal make-up cleansing formulation prepared in this study would be useful for future application in make-up cleansing due to its excellent stability, cleansing ability, and unique hologram-like pattern placed between two polarizing plates.

Research on Improvement of CH4 Reduction Performance of NGOC for CNG Bus (CNG 버스용 NGOC의 CH4 저감 성능 향상을 위한 연구)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.708-715
    • /
    • 2017
  • Recently, in order to meet the stricter emission regulations, the proportion of after-treatments for vehicles and vessels has been increasing gradually. The objective of this study is to investigate the improvement of $CH_4$ reduction ability of natural gas oxidation catalyst (NGOC), which reduces toxic gases emitted from CNG buses. Thirteen NGOCs were prepared, and the conversion performance of noxious gases according to the type of supports, the loading amount of noble metal, and surfactant and aging were determined. Support Zeolite supported on No. 3 $NGOC(1Pt-1Pd-3MgO-3CeO_2/(46TiO_2+23Al_2O_3+23Zeolite)$ is an anionic alkali metal/earth metal component that improved the oxidation reactivity between CO and NO and noble metal dispersion, and thus enhanced the $CH_4$ reduction ability. As the loading amount of Pd, a noble metal with a high selectivity to $CH_4$, was increased, the number of reaction sites was increased and the ability to reduce $CH_4$ was improved. No. 11 $NGOC(1Pt-1Pd-3MgO-3CeO_2/(Z20+Al80)$(pH=8.5), to which nitrate surfactant had been added, exhibited well dispersed catalyst particles with no agglomeration and improved the $CH_4$ reduction ability by 5-15%. The $NGOC(2Pt-2Pd-3Cr-3MgO/90Al_2O_3)$(48h aging), which was mildly thermal aged for 48h, increased the $CH_4$ reduction ability to about 10% or less as compared with No. 12 NGOC(Fresh).