• Title/Summary/Keyword: Animal tracking

Search Result 60, Processing Time 0.025 seconds

Monitoring the Wildlife Use of Culverts and Underpasses Using Snow Tracking in Korea (야생동물의 도로 횡단 특성 분석 -도로횡단구조물 상의 눈 위 발자국 조사를 통하여-)

  • Choi Tae-Young;Lee Yong-Wook;Whang Ki-Young;Kim Seon-Myoung;Park Moon-Sun;Park G-Rim;Cho Beom-Joon;Park Chong-Hwa;Lee Myung-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.20 no.3
    • /
    • pp.340-344
    • /
    • 2006
  • The objective of this paper was to investigate the potential of road-crossing structures as biological corridors that can overcome wildlife habitat fragmentation caused by road construction. Snow tracking on animal trace adjacent to and under bridges, underpasses, and culverts of eight rural highways in Korea was carried out. A total 89 structures were monitored and the results follow. First, the probability of road crossing increases with the increasing cross sectional size of crossing structures. Second, small to medium sized carnivores such as raccoon dog, leopard cat, and Siberian weasel use all types of structures. Finally, water deer, or large herbivore crossed only under bridges. Consequently, further studies are necessary to identify suitable types of road crossing structures that can mitigate the probability of road-kills and habitat fragmentation of water deer.

The Food Habits and Habitat Use of Yellow-Throated Martens(Martes flavigula) by Snow Tracking in Korean Temperate Forest During the Winter (눈 위 발자국 추적을 통한 담비의 겨울철 생태특성 파악)

  • Woo, Donggul;Choi, Taeyoung;Kwon, Hyuksoo;Lee, Sanggyu;Lee, Jongchun
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.5
    • /
    • pp.532-548
    • /
    • 2015
  • The winter ecology of individual yellow-throated martens(Martes flavigula) intemperate region of Korea were studied through snow-tracking. The study was performed across 3 winter seasons, from January 2011 to February 2013. Total distance of 49.8km was snow tracked (comprising 13 snow-tracking routes) to determine winter foraging habits, general behavior and movement paths of solitary and small groups (1-6 individuals; $mean=2.9{\pm}1.6$) of yellow-throated martens. The martens in the current study were omnivorous, with their winter diet including 9 animal and 5 plant species. Yellow-throated martens searched for food near and under the fallen logs and branches, root plates of fallen trees, around the roots of growing trees, and in small holes in the ground. They also climbed trees to search inside the tree holes and vacant bird nests. Foraging activity was estimated to occur at a frequency of 1.20 times/km, while territory marking occurred 1.42 times/km on average. Of the 60 documented foraging activities we observed, 17 were successful (28.3%). Moving activity and territory marking mainly occurred along ridges, whereas foraging activity was recorded in valleys, slopes, and forest edges. To protect the habitat of this species, the entire forest should be preserved, including the valleys, slopes, and even forest edges as well as main ridges.

Tracking Changes of Snow Area Using Satellite Images of Mt.Halla at an Altitude of 1,600 m (위성화상을 이용한 고도 1,600 m 이상의 한라산 적설 면적 변화 추적)

  • Han, Gyung Deok;Yoon, Seong Uk;Chung, Yong Suk;Ahn, Jinhyun;Lee, Seung-Jae;Kim, Yoon Seok;Min, Taesun
    • Journal of Environmental Science International
    • /
    • v.31 no.10
    • /
    • pp.815-824
    • /
    • 2022
  • It is necessary to understand the amount of snowfall and area of snow cover of Mt. Halla to ensure the safety of mountaineers and to protect the ecosystem of Mt. Halla against climate change. However, there are not enough related studies and observation posts for monitoring snow load. Therefore, to supplement the insufficient data, this study proposes an analysis of snow load and snow cover using normalized-difference snow index. Using the images obtained from the Sentinel2 satellite, the normalized-difference snow index image of Mt. Halla could be acquired. This was examined together with the meteorological data obtained from the existing observatory to analyze the change in snow cover for the years 2020 and 2021. The normalized-difference snow index images showed a smaller snow pixel number in 2021 than that in 2020. This study concluded that 2021 may have been warmer than 2020. In the future, it will be necessary to continuously monitor the amount of snow and the snow-covered area of Mt. Halla using the normalized-difference snow index image analysis method.

Automatic identification and analysis of multi-object cattle rumination based on computer vision

  • Yueming Wang;Tiantian Chen;Baoshan Li;Qi Li
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.519-534
    • /
    • 2023
  • Rumination in cattle is closely related to their health, which makes the automatic monitoring of rumination an important part of smart pasture operations. However, manual monitoring of cattle rumination is laborious and wearable sensors are often harmful to animals. Thus, we propose a computer vision-based method to automatically identify multi-object cattle rumination, and to calculate the rumination time and number of chews for each cow. The heads of the cattle in the video were initially tracked with a multi-object tracking algorithm, which combined the You Only Look Once (YOLO) algorithm with the kernelized correlation filter (KCF). Images of the head of each cow were saved at a fixed size, and numbered. Then, a rumination recognition algorithm was constructed with parameters obtained using the frame difference method, and rumination time and number of chews were calculated. The rumination recognition algorithm was used to analyze the head image of each cow to automatically detect multi-object cattle rumination. To verify the feasibility of this method, the algorithm was tested on multi-object cattle rumination videos, and the results were compared with the results produced by human observation. The experimental results showed that the average error in rumination time was 5.902% and the average error in the number of chews was 8.126%. The rumination identification and calculation of rumination information only need to be performed by computers automatically with no manual intervention. It could provide a new contactless rumination identification method for multi-cattle, which provided technical support for smart pasture.

Functions and Driving Mechanisms for Face Robot Buddy (얼굴로봇 Buddy의 기능 및 구동 메커니즘)

  • Oh, Kyung-Geune;Jang, Myong-Soo;Kim, Seung-Jong;Park, Shin-Suk
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.270-277
    • /
    • 2008
  • The development of a face robot basically targets very natural human-robot interaction (HRI), especially emotional interaction. So does a face robot introduced in this paper, named Buddy. Since Buddy was developed for a mobile service robot, it doesn't have a living-being like face such as human's or animal's, but a typically robot-like face with hard skin, which maybe suitable for mass production. Besides, its structure and mechanism should be simple and its production cost also should be low enough. This paper introduces the mechanisms and functions of mobile face robot named Buddy which can take on natural and precise facial expressions and make dynamic gestures driven by one laptop PC. Buddy also can perform lip-sync, eye-contact, face-tracking for lifelike interaction. By adopting a customized emotional reaction decision model, Buddy can create own personality, emotion and motive using various sensor data input. Based on this model, Buddy can interact probably with users and perform real-time learning using personality factors. The interaction performance of Buddy is successfully demonstrated by experiments and simulations.

  • PDF

Mathematical modeling for flocking flight of autonomous multi-UAV system, including environmental factors

  • Kwon, Youngho;Hwang, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.595-609
    • /
    • 2020
  • In this study, we propose a decentralized mathematical model for predictive control of a system of multi-autonomous unmanned aerial vehicles (UAVs), also known as drones. Being decentralized and autonomous implies that all members make their own decisions and fly depending on the dynamic information received from other unmanned aircraft in the area. We consider a variety of realistic characteristics, including time delay and communication locality. For this flocking flight, we do not possess control for central data processing or control over each UAV, as each UAV runs its collision avoidance algorithm by itself. The main contribution of this work is a mathematical model for stable group flight even in adverse weather conditions (e.g., heavy wind, rain, etc.) by adding Gaussian noise. Two of our proposed variance control algorithms are presented in this work. One is based on a simple biological imitation from statistical physical modeling, which mimics animal group behavior; the other is an algorithm for cooperatively tracking an object, which aligns the velocities of neighboring agents corresponding to each other. We demonstrate the stability of the control algorithm and its applicability in autonomous multi-drone systems using numerical simulations.

Animal Home Range Estimators - A Review and a Case Study - (동물 행동권 분석 방법론 고찰 - 괭이갈매기 사례 분석과 시사점 -)

  • Lee, Sung-Joo;Lee, Who-Seung
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.2
    • /
    • pp.202-216
    • /
    • 2022
  • Animals exhibit certain behaviors and movement patterns as they react to their internal needs, external stimuli, and surrounding environments. They have a bounded range in which they mostly spend their time, and it is referred to as a home range. Based on the fact that the home range is a critical area for the survival and preservation of species, there has been a growing body of research on developing more precise home range estimation methods to use the estimated ranges as a ground for establishing an effective conservation policy since the early 1940s. Recent rapid advancements in telemetry technology that resulted in the presence of autocorrelation between locations with short time intervals revealed the limitations of the existing estimators. Many novel estimators have been developed to compensate for it by incorporating autocorrelation in calculating home ranges. However, studies on the animal home range are still in their early stage in Korea, and newly developed methodologies have not yet been adopted. Therefore, this study aims to introduce the foreign home range estimation methods and foster domestic research activities on home ranges. Firstly, we compared and contemplated seven estimators by categorizing them into geometrical and statistical methodologies and then divided them into estimators that assume independent observations and those that consider autocorrelation in each category. After that, the home ranges of black-tailed gulls (Larus crassirostris) were calculated using GPS tracking data for the month of June and derived home range estimators by applying the methodology introduced in this study. We analyzed and compared the results to discuss the strengths and weaknesses of each method. Lastly, we proposed a guideline that can help researchers choose an appropriate estimator for home range calculation based on the animal location data characteristics and analysis purpose.

Estimation of Reliability of Real-time Control Parameters for Animal Wastewater Treatment Process and Establishment of an Index for Supplemental Carbon Source Addition (가축분뇨처리공정의 자동제어 인자 신뢰성 평가 및 적정 외부탄소원 공급량 지표 확립)

  • Pak, JaeIn;Ra, Jae In-
    • Journal of Animal Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.561-572
    • /
    • 2008
  • Responses of real-time control parameters, such as ORP, DO and pH, to the conditions of biological animal wastewater treatment process were examined to evaluate the stability of real-time control using each parameter. Also an optimum index for supplemental carbon source addition based on NOx-N level was determined under a consideration of denitrification rate by endogenous respiration of microorganism and residual organic matter in liquor. Experiment was performed with lab-scale sequencing batch reactor(SBR) and working volume of the process was 45L. The distinctive nitrogen break point(NBP) on ORP-and DO-time profiles, which mean the termination of nitrification, started disappearing with the maintenance of low NH4-N loading rate. Also the NBP on ORP-and DO-time profiles was no longer observed when high NOx-N was loaded into the reactor, and the sensitivity of ORP became dull with the increase of NOx-N level. However, the distinctive NBP was constantly occurred on pH(mV)-time profile, maintaining unique profile patterns. This stable occurrence of NBP on pH(mV)-time profile was lasted even at very high NOx-N:NH4-N ratio(over 80:1) in reactor, and the specific point could be easily detected by tracking moving slope change(MSC) of the curve. Revelation of NBP on pH(mV)-time profile and recognition of the realtime control point using MSC were stable at a condition of over 300mg/L NOx-N level in reactor. The occurrence of distinctive NBP was persistent on pH(mV)-time profile even at a level of 10,000mg/L STOC(soluble total organic carbon) and the recognition of NBP was feasible by tracing MSC, but that point on ORP and DO-time profiles began to disappear with the increase of STOC level in reactor. The denitrfication rate by endogenous respiration and residual organic matter was about 0.4mg/L.hr., and it was found that 0.83 would be accepted as an index for supplemental carbon source addition when 0.1 of safety factor was applied.

Effect of weight of radio-transmitters on survival of Red-tongue viper snake (Gloydius ussuriensis) and Short-tailed viper snake (Gloydius saxatilis)in the radio-transmitter implantation (발신기 삽입시 발신기 무게가 쇠살모사(Gloydius ussuriensis)와 까치살모사(Gloydius saxatilis)의 생존에 미치는 영향)

  • Do, Min-Seock;Shim, Jae-Han;Choi, Young-Min;Yoo, Jeong-Chil
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.85-92
    • /
    • 2014
  • In order to study the home range of the red-tongue viper snake (Gloydis ussuriensis) and the short-tailed viper snake (Gloydius saxatilis) belonging to the viperidae of squamat in Korea, we implanted radio-transmitters which were weighed less than 5% of individual mass in them and traced their location by radio-tracking. Surgeries for transmitter insertion were performed on 5 red-tongue viper snakes and 6 short-tailed viper snakes (total 11 individuals) and the average ratio of transmitter mass to body mass were 4.2% and 2.2%, respectively. After radio-transmitter implantation, all short-tailed viper snakes survived but 4 out of 5 red-tongue viper snakes did not survive during the convalescence stage, showing only 20% of survival rate. The results suggest that the ratio of transmitter mass to body mass should be less than 3.6% at least in these species, although previous studies have recommended various ranges from 1% to 7% as the acceptable ratios.

Interzonal Comparative Analysis of the Wintering Habitat of Spot-billed Duck (Anas poecilorhyncha) (흰뺨검둥오리의 지역간 월동서식지이용 비교분석)

  • Hwang, Jong-Kyeong;Shin, Man-Seok;Kang, Young-Myong;Yoom, Hachung;Choi, Jida;Jeong, Wooseog;Lee, Jun-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.4
    • /
    • pp.676-683
    • /
    • 2016
  • This study was conducted using the Wild -Tracker (WT-300, GPS-Mobile Phone Based Telemetry KoEco) to understand the habitats of the spot-billed duck wintering in urban and rural areas and provide the results as the basic data for the protection and management of the habitats of the waterbirds in Korea. Study areas consisted of the Anseong stream in Gyeonggi-do and the Sansu reservoir in Haenam. Five spot-billed ducks were captured by region, and we attached Wild-Tracker to each of the spot-billed ducks. We analyzed the tracking location data using ArcGIS 9.x and calculated Kernel Density Estimation (KDE) and Minimum Convex Polygon (MCP). The average home-range measured by MCP was $250.8km^2$(SD=195.3, n=5) in Anseong and was $89.1km^2$ (SD=69.6, n=5) in Haenam. 50% home-range measured by KDE was $21.8km^2$ (SD=26.9, n=5) in Anseong and $3.5km^2$ (SD=2.2, n=5) in Haenam, indicating a narrow home range in Haenam. During the winter season, both wetland and paddy field were mostly used as habitats in Anseong and Haenam. While the paddy field utilization rate was high in the daytime in Haenam, it was high in the nighttime in Anseong. By late winter, Haenam's day time paddy field utilization rate and Anseong's night time paddy field utilization rate increased.