• Title/Summary/Keyword: Animal probiotics

Search Result 425, Processing Time 0.024 seconds

Effects of dietary mixture of protease and probiotics on growth performance, blood constituents, and carcass characteristics of growing-finishing pigs

  • Min, Yejin;Choi, Yohan;Choe, Jeehwan;Kim, Younghwa;Jeong, Yongdae;Kim, Doowan;Kim, Joeun;Jung, Hyunjung;Song, Minho
    • Journal of Animal Science and Technology
    • /
    • v.61 no.5
    • /
    • pp.272-277
    • /
    • 2019
  • This study was conducted to evaluate the effects of dietary mixture of protease and probiotics on growth performance, blood constituents, and carcass characteristics of growing-finishing pigs. A total of 48 growing pigs were randomly allotted into 2 dietary (6 pigs/pen; 4 replicates/treatment). The treatments were a diet based on corn and soybean meal (CON) and CON supplemented with 0.01% of dietary mixture of protease and probiotics (MULTI). No differences were found on growth performance (average daily gain, ADG; overall, 874.06 vs. 881.14 g/d; p > 0.05), blood constituents (white blood cell, WBC; phase I, 17.51 vs. $19.96{\times}10^3/{\mu}L$; phase II, 19.65 vs. $21.95{\times}10^3/{\mu}L$; p > 0.05), and carcass characteristics during overall experimental period between CON and MULTI. In conclusion, the addition of dietary mixture of protease and probiotics in growing-finishing pig diet did not have any beneficial effects.

Study on the Development of a Probiotics Complex for Weaned Pigs

  • Xuan, Z.N.;Kim, J.D.;Heo, K.N.;Jung, H.J.;Lee, J.H.;Han, Y.K.;Kim, Y.Y.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.10
    • /
    • pp.1425-1428
    • /
    • 2001
  • This study was conducted to investigate the effects of supplementation of a probiotics complex on growth performance, nutrient digestibility, diarrhea score and microbial population in pigs weaned at 21 days of age. Treatments were 1) control A (0.2% antibiotics, Avilamycin), 2) control B (0.1 % $Ractocom^{(R)}$), 3) 0.1%, 4) 0.2% and 5) 0.3% probiotics complex; 80 pigs were used and each treatment had 4 replicates with 4 pigs per replicate (16 pigs per treatment). During phase I period (d 0 to 14), although there was no significant difference, pigs fed control B diet showed higher ADG (average daily gain) and better F/G (feed/gain) than any other treatments. During late experimental period (d 15 to 28), pigs fed diet supplemented with 0.2% probiotics complex showed slightly higher ADG. Overall (d 0 to 28) the diet that contained 0.2% probiotics complex gave slightly higher ADG and ADFI (average daily feed intake) than the other diets. In a metabolic trial using 20 piglets, nutrient digestibility showed the best results in pigs fed 0.2% probiotics complex diet, but not significantly different from other groups. Diarrhea score and microbial population status in intestine, colon and feces were not affected by dietary treatments. In conclusion, this study suggested that a newly developed probiotics complex can replace antibiotics in weaned pigs.

Probiotics that Ameliorate Cognitive Impairment through Anti-Inflammation and Anti-Oxidation in Mice

  • Shinhui Lee;Sanung Eom;Jiwon Lee;Minsu Pyeon;Kieup Kim;Kyu Yeong Choi;Jung Hee Lee;Da Jeong Shin;Kun Ho Lee;Sejong Oh;Junho H Lee
    • Food Science of Animal Resources
    • /
    • v.43 no.4
    • /
    • pp.612-624
    • /
    • 2023
  • The gut-brain axis encompasses a bidirectional communication pathway between the gastrointestinal microbiota and the central nervous system. There is some evidence to suggest that probiotics may have a positive effect on cognitive function, but more research is needed before any definitive conclusions can be drawn. Inflammation-induced by lipopolysaccharide (LPS) may affect cognitive function. To confirm the effect of probiotics on oxidative stress induced by LPS, the relative expression of antioxidant factors was confirmed, and it was revealed that the administration of probiotics had a positive effect on the expression of antioxidant-related factors. After oral administration of probiotics to mice, an intentional inflammatory response was induced through LPS i.p., and the effect on cognition was confirmed by the Morris water maze test, nitric oxide (NO) assay, and interleukin (IL)-1β enzyme-linked immunosorbent assay performed. Experimental results, levels of NO and IL-1β in the blood of LPS i.p. mice were significantly decreased, and cognitive evaluation using the Morris water maze test showed significant values in the latency and target quadrant percentages in the group that received probiotics. This proves that intake of these probiotics improves cognitive impairment and memory loss through anti-inflammatory and antioxidant mechanisms.

Influence of Probiotics Supplementation on Egg Quality and Excretal Noxious Gas in Laying Hens (산란계에 있어 생균제의 첨가가 계란품질 및 배설물내 유해가스 함량에 미치는 영향)

  • Hong, J.W.;Kim, I.H.;Kwon, O.S.;Han, Y.K.;Lee, S.H.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.213-220
    • /
    • 2002
  • This study was conducted to investigate the effects of feeding probiotics on the egg quality and excretal noxious gas in laying hens. One hundred forty four, 36 weeks old ISA brown commercial layer, were employed in a 28 d feeding trial with a 7 d adjustment period. Dietary treatments are 1) control(basal diet), 2) PB0.3(basal diet+0.3% probiotics), 2) PB0.6(basal diet+0.6% probiotics). For overall period, hen-day egg production, egg weight and egg shell breaking strength tended to increase (P>0.05) by dietary probiotic supplementation. Egg shell thickness was improved by supplementation of probiotics(linear effect, P$<$0.01). Diets PB0.3 and PB0.6 improved the yolk color compared to control diet(linear effect, P$<$0.02). As supplementation level of probiotics increased in the diets, egg yolk index tended to increase(linear effect, P$<$0.04). $NH_3$-N concentration in excreta fed PB0.6 diet was significantly (P$<$0.04) lower than either control or PB0.3 diet. In conclusion, supplementing probiotics to a Corn-SBM diet for laying hens increased egg shell thickness, yolk color and decreased egg yolk index, and decreased excretal $NH_3$-N concentration.

Perspectives and advances in probiotics and the gut microbiome in companion animals

  • Lee, Daniel;Goh, Tae Wook;Kang, Min Geun;Choi, Hye Jin;Yeo, So Young;Yang, Jungwoo;Huh, Chul Sung;Kim, Yoo Yong;Kim, Younghoon
    • Journal of Animal Science and Technology
    • /
    • v.64 no.2
    • /
    • pp.197-217
    • /
    • 2022
  • As the number of households that raise dogs and cats is increasing, there is growing interest in animal health. The gut plays an important role in animal health. In particular, the microbiome in the gut is known to affect both the absorption and metabolism of nutrients and the protective functions of the host. Using probiotics on pets has beneficial effects, such as modulating the immune system, helping to reduce stress, protecting against pathogenic bacteria and developing growth performance. The goals of this review are to summarize the relationship between probiotics/the gut microbiome and animal health, to feature technology used for identifying the diversity of microbiota composition of canine and feline microbiota, and to discuss recent reports on probiotics in canines and felines and the safety issues associated with probiotics and the gut microbiome in companion animals.

Research and Status on the Development of Companion Animal Food with the Addition of Probiotics: A Review (프로바이오틱스를 첨가한 반려동물 사료 개발에 관한 연구 및 현황: 총설)

  • Hyun-Ju Kim;Jung-Whan Chon;Hyungsuk Oh;Hyeon-Jin Kim;Eunah Jung;Kun-Ho Seo;Kwang-Young Song
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.4
    • /
    • pp.179-190
    • /
    • 2023
  • Currently, various probiotics are being used to improve the nutrition of companion animals. They are widely sold as additives in companion animal foods because of the numerous gastrointestinal and immune health benefits for dogs and cats. Therefore, extensive research is being conducted to improve quality and safety during manufacturing and to extend the shelf life of companion animal foods by adding probiotics. The manufacturing process must be conducted such that the characteristics and efficacy of probiotics added to food are optimally beneficial for companion animals. Therefore, this review aims to address the overall characteristics of the probiotic strains used and to examine the various methods through which probiotics are added to companion animal foods.

Clostridium difficile-associated Intestinal Disease and Probiotics

  • Yun, Bohyun;Lee, Sang Dae;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Probiotics are traditionally defined as viable microorganisms that have a beneficial effect in the prevention and treatment of pathologic conditions when they are ingested. Although there is a relatively large volume of literature that supports the use of probiotics to prevent or treat intestinal disorders, the scientific basis behind probiotic use has only recently been established, and clinical studies on this topic are just beginning to get published. Currently, the best studied probiotics are lactic acid bacteria, particularly Lactobacillus and Bifidobacterium species. Other organisms used as probiotics in humans include Escherichia coli, Streptococcus sp., Enterococcus sp., Bacteroides sp., Bacillus sp., Propionibacterium sp., and various fungi, and some probiotic preparations contain more than one bacterial strain. Probiotic use for the prevention and treatment of antibiotic-associated diarrhea caused by Clostridium difficile induced intestinal disease as well as for other gastrointestinal disorders has been discussed in this review.

  • PDF

Effects of probiotics on the prevention of atopic dermatitis

  • Kim, Nam Yeun;Ji, Geun Eog
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.6
    • /
    • pp.193-201
    • /
    • 2012
  • Atopic dermatitis (AD) is an immune disorder that is becoming increasingly prevalent throughout the world. The exact etiology of AD remains unknown, and a cure for AD is not currently available. The hypothesis that appropriate early microbial stimulation contributes to the establishment of a balanced immune system in terms of T helper type Th1, Th2, and regulatory T cell (Treg) responses has led to the use of probiotics for the prevention and treatment of AD in light of various human clinical studies and animal experiments. Meta-analysis data suggests that probiotics can alleviate the symptoms of AD in infants. The effects of balancing Th1/Th2 immunity and enhancing Treg activity via the interaction of probiotics with dendritic cells have been described in vitro and in animal models, although such an effect has not been demonstrated in human studies. In this review, we present some highlights of the immunomodulatory effects of probiotics in humans and animal studies with regard to their effects on the prevention of AD.

Optimization of the Growth Rate of Probiotics in Fermented Milk Using Genetic Algorithms and Sequential Quadratic Programming Techniques

  • Chen, Ming-Ju;Chen, Kun-Nan;Lin, Chin-Wen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.6
    • /
    • pp.894-902
    • /
    • 2003
  • Prebiotics (peptides, N-acetyglucoamine, fructo-oligosaccharides, isomalto-oligosaccharides and galactooligosaccharides) were added to skim milk in order to improve the growth rate of contained Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium longum and Bifidobacterium bifidum. The purpose of this research was to study the potential synergy between probiotics and prebiotics when present in milk, and to apply modern optimization techniques to obtain optimal design and performance for the growth rate of the probiotics using a response surface-modeling technique. To carry out response surface modeling, the regression method was performed on experimental results to build mathematical models. The models were then formulated as an objective function in an optimization problem that was consequently optimized using a genetic algorithm and sequential quadratic programming approach to obtain the maximum growth rate of the probiotics. The results showed that the quadratic models appeared to have the most accurate response surface fit. Both SQP and GA were able to identify the optimal combination of prebiotics to stimulate the growth of probiotics in milk. Comparing both methods, SQP appeared to be more efficient than GA at such a task.

Comparison of the Effect of Green Tea By-product and Green Tea Probiotics on the Growth Performance, Meat Quality, and Immune Response of Finishing Pigs

  • Ko, S.Y.;Bae, I.H.;Yee, S.T.;Lee, S.S.;Uuganbayar, D.;Oh, J.I.;Yang, C.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.10
    • /
    • pp.1486-1494
    • /
    • 2008
  • The objective of this experiment was to compare the effects of green tea by-product and green tea probiotics on the growth performance, meat quality and immune response of finishing pigs. A total of 72 crossbred "Landrace$\times$Yorkshire" finishing pigs with an average of 76 kg body weight were assigned to 4 dietary treatments in a completely randomized design. Each treatment had 3 replications with 6 pigs per replication. The four dietary treatments were control, antibiotics (control diet with 0.003% chlortetracycline added), and diets containing 0.5% green tea by-product or 0.5% green tea probiotic supplementation. Weight gain was increased in 0.5% green tea probiotics treatment compared to others, but there was no significant difference (p>0.05). The incorporation of 0.5% green tea probiotics to diets reduced the feed conversion ratio in finishing pigs (p>0.05). The incorporation of 0.5% green tea by-product into the pig diet reduced the crude protein and fat contents of the meat (p>0.05). Pigs fed diets containing 0.5% green tea probiotic supplementation had lowered meat TBA values compared to those fed 0.5% green tea by-product (p<0.05). The proliferation of spleen cells stimulated with Con A (concanavalin: 0.1, 0.3, and $1.0{\mu}g/ml$) significantly increased with 0.5% green tea by-product treatment compared to antibiotic treatment (p<0.05), but was significantly decreased in 0.5% green tea probiotics treatment compared to the antibiotic treatment (p<0.05). When stimulated with $1.0{\mu}g/ml$ Con A, splenocyte production of IL-6 from pigs treated with 0.5% green tea by-product or green tea probiotics was significantly increased compared to the antibiotic treatment group (p<0.05). Splenocyte production of TNF-${\alpha}$ after treatment with $1.0{\mu}g/ml$ Con A was significantly higher following 0.5% green tea probiotics treatment (p<0.05), while TNF-${\alpha}$ production after $10.0{\mu}g/ml$ LPS (lipopolysaccharide) was significantly higher in the 0.5% antibiotic treatment group (p<0.05).