• Title/Summary/Keyword: Aniline Mineralization

Search Result 4, Processing Time 0.019 seconds

Effect of Dual Substrates on Aniline Mineralization by Pseudomonas testosteroni 6F1 (Pseudomonas testosteroni 6F1의 아닐린 분해에 미치는 이차기질의 영향)

  • Cho, Kyung-Yun;Chun, Hyo-Kon;Bae, Kyung-Sook;Kho, Young-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.5
    • /
    • pp.427-431
    • /
    • 1988
  • The simultaneons mineralization of aniline and other secondary carbon sources by Pseudomonas testosteroni 6Fl were evaluated by the lag time and the enzyme induction level. The lag time for aniline mineralization by P. testosteroni 6Fl was 7 hours, whereas the lag time for aniline and readily utilizable secondary substrates were 1-3 hours. This stimulated degradation resulted from the simultaneous use of secondary substrates and aniline, the increased rate of enzyme induction, and the in-creased rate of the cell growth. The enzyme induction level of P. testosteron 6F1 were varied according to the kinds of secondary substrate.

  • PDF

Degradation of $^{14}C-bifenox$ in Soils under Anaerobic Conditions (혐기적 조건의 토양에서 제초제 $^{14}C-bifenox$의 분해)

  • Kwak, Hyung-Ryul;Lee, Kang-Bong;Kim, Kil-Yong;Kim, Yong-Woong;Suh, Yong-Tack
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.300-308
    • /
    • 2000
  • The degradation of herbicide $^{14}C-bifenox$ was studied in soils under anaerobic conditions. $^{14}C-bifenox$ was treated in silty loam and sandy loam soils, respectively at a rate of 2.1 mg/kg, and the soil was incubated under anaerobic conditions at $25^{\circ}C$ for 180 days. The mineralization, solvent extractable and non-extractable residues, degradation products of bifenox were investigated during the experiments. The relative amounts of $^{14}CO_2$ were 1.97 and 0.9% of applied $^{14}C$ in silty loam and sandy loam soils, respectively. The non-extractable residues of sandy loam soil increased dramatically up to 79.12% of applied $^{14}C$, and were higher than those of silt loam soil, suggesting physico-chemical properties and especially organic matter contributed to the difference of $^{14}C$ between two soils. The non-extractable residues were formed mainly humin fraction and increased with time. The major metabolites were nitrofen, 5-(2,4-dichlorophenoxy)-2-Nitrobenzoate, 2,4-dichlorophenoxy aniline and methyl 5-(2,4-dichlorophenoxy) anthranilate by GC/MS analysis. From the results of volatilization, mineralization and degradation of bifenox, bifenox was stable chemically and biologically in soil.

  • PDF

The Effects of Environmental Factors on Biodegradability Test for Lubricant Products (환경인자가 윤활제품의 생분해도 시험에 미치는 영향)

  • Cho, Eun-Hye;Park, Keun-Hyoung;Han, Seung-Ock;Kim, Eui-Yong;Ryu, Jae-Sang;Jang, Sun-Bok;Lee, Un-Gi;Chae, Hee-Jeong
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.285-290
    • /
    • 2008
  • Various methods (OECD 301B, ISO 9439 and ASTM 5864) for biodegradability test of lubricants were reviewed, and a standard procedure was developed. Most lubrication products are released in rivers or sea then is degraded by microbial action in aerobic condition. Most international method are based on $CO_2$ evolution test. Inoculum obtained from a sewage disposal plant and test compound are cultivated in a mineral medium. Organic carbon of the test compound is degraded and oxidized through the enzymatic actions of inoculum, and ultimately mineralized to carbon dioxide. Biodegradability test conditions of lubricant oils were optimized. The highest biodegradability was achieved when the same medium as in ASTM 5864 and inoculum concentration of $10^4{\sim}10^5$ cell/L were used. The optimum standard materials were selected as aniline and sodium acetate. Additionally the effects of inoculum type on microbial growth and biodegradability were examined. Finally the standard operating procedure (SOP) for biodegradability test method was proposed.

Leaching behaviour of the herbicide mefenacet in the soil columns (토양 column중 제초제 mefenacet의 용탈)

  • Kim, Sung-Min;Kwon, Jeong-Wook;Ahn, Ki-Chang;Cho, Il-Kyu;Kyung, Kee-Sung;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.3
    • /
    • pp.176-181
    • /
    • 2003
  • The leaching behaviour of [aniline-$^{14}C$]mefenacet in soil was investigated using glass columns (5 cm I.D. $\times$ 30 cm. H) packed with two types of soils with different physicochemical properties. $^{14}C$-Mefenacet (8.33 kBq) and mefenacet (in total, 1.05 mg/kg) were treated onto soil columns and rice plants (Oryza sativa L.) were grown for 17 weeks on these columns. Leachates from the columns were collected at the rate of 122.5 mL per week. $^{14}C$-Activities leached from soil A (OM, 3.1%; CEC, 86 mmol(+)/kg; texture, loam) columns with and without rice plants were 1.95 and 4.19% of the originally applied, whereas those from soil B (OM, 1.3%; CEC, 71 mmol(+)/kg; texture, loam) were 2.69 and 7.05%, respectively. These results indicated that larger amounts of $^{14}C$ were percolated from soil B with less organic matter and from the columns without vegetation. $^{14}C$-Activities absorbed by rice plants from soil A and B were 8.95 and 8.47%, respectively, most of which remained in the root and shoot excluding unhulled grains and ears without grains. $62\sim73%$ of the originally applied $^{14}C$ remained in the depth of $0\sim5cm$ in soil. The mass balance indicated that the losses by volatilization and/or mineralization amounted to $3.4\sim9.2%$ of the originally applied. $^{14}C$-Radioactivities in the aqueous phase of the leachates ranged from 59.4 to 97.7% of the radioactivities in leachates, showing the fast transformation of mefenacet to the polar metabolites.