• Title/Summary/Keyword: Angular movement

Search Result 212, Processing Time 0.022 seconds

Longitudinal Kinematical Analysis of Kip to Swallow Motion in Rings (링 운동 차오르며 Swallow 동작 처치 전.후의 기술분석)

  • Back, Jin-Ho;Park, Jong-Hoon;Lee, Yong-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.173-181
    • /
    • 2006
  • The purpose of this study is grasp the problem of the gymnast, Kim, Dong-Hwa's Kip to Swallow Motion in Rings, and make up for the weak points to help him to perform a better performance. Therefore, two tryouts for $28^{th}$ Athens Olympic Games were filmed using video camera then finalized with Kinematical Analysis using 3D motion analysis program followings are the form of conclusions. 1. In the very first tryout, when he was doing a Swallow Support Scale, his CM position was high and arm slope was deduction because when he was doing Kip, the ascent velocity was low and he tried excessively to pull him on rings due to relying upon angular movement of shoulder joint. 2. When he was doing drop, he let his hip angle bend only little bit and let fall so making shoulder angle wider and maintain the level horizontally occurs strong drop motion when vertical descent is happening. 3. As a result, lowering the direction of a kick makes CM's movement path lower, increase vertical ascent velocity, and it helps to do the Swallow Support motion in short period of time. 4. After a strong drop motion, which is deep and fast, would make rope of ring shake so there is a defect that the body moves to forward area. However, it does not effect in Swallow Support Scale motion. 5. In the second tryout, trunk rotation angle and arm slope was fixed decrease while doing rotary motion. When rotary motion was happening, before the body was going under the rings, maintained his arm slope horizontally so his Swallow Support Scale motion was nearly perfect.

The Effect of Badminton Shoe Forefoot Flexibility during the Under Clear Quick Lunge from a Jump Smashing (배드민턴화의 굴곡성(Flexibility) 차이가 점프 스매싱 후 언더클리어 동작시 하지에 미치는 영향)

  • Yi, Jae-Hoon;Sohn, Jee-Hoon;Ryue, Jae-Jin;Lee, Ki-Kwang;Lee, Jung-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.105-111
    • /
    • 2012
  • The purpose of this study was to investigate the effect that difference in forefoot of shoe flexibility during the quick lunge from a jump smashing on the lower limbs and the plantar pressure distribution. For this 10 elite badminton players with over 10 years experience and right handed participated. Two kinds of badminton shoes were selected and tested mechanical testing for the forefoot flexibility. Motion analysis, ground reaction forces and plantar pressure distribution were recorded. It was required to conduct lunge movement after jumping smashing as possible as high. Photo sensor was located in 3 meter away from standing position and its height was 40 cm. Subjects were conducted to return original position after touching the sensor as under clear movement as possible as fast. Forefoot stiffness had an effect on shoe peak bending degree and peak bending angular velocity in propulsion phase. Forefoot flexibility had an effect on ankle plantar flexion and knee flexion moment. It appears that joint power on lower limb and peak plantar pressure were not influenced by the flexibility of shoes.

A Study on the Fishing Method of the Midwater Trawl -On the meneuveravilities of the fishing boat under operation- (중층 트롤의 어법에 관한 연구)

  • 김민석
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.4
    • /
    • pp.260-271
    • /
    • 1993
  • Due to depletion of fish resources as time goes on, the trawl fishing industries which have caught the demersal fish is confronting with financial difficulties. For the purpose of breaking these difficulties, trawlers are expanding the fishing targets to the midwater from bottom stock. The trawlers become to be able to detect the fish schools not only vertical but also horizontal direction by equipping the sonar system on board. Even though the operator locates the fish school by sonar, it is not easy to make a desirable catch of the fish school which is detected, for the reason of the maneuverring characteristics of trawler. For the purpose of enhancing the efficiency of a fish catch, the auther performed a series of on board experiments to investigate the maneuverablilites of midwater trawaler. The obtained results are summerized as follows: 1. The higher the RPM of main engine, the smaller the magnitude of turning circle. And it is smaller in the right than in the left turning 2. Towing speed varies irregularly under turning novenment. When the RPM of main engine being 560, 680 the angular velocities are 11.3deg/min, 22.5deg/min respectively. 3. The difference of new course distance between calculated by maneuverring indices and measured by experimental ship is high when altering course being large and towing speed low. 4. The faster the towing speed is, the shorter the new course distance becomes. When towing speed is same in right and left turning movement, the now course distance is shorter in case of right turning movement than in left. 5. It is considered to be convenient for a navigator to utilize the curves for altering course in order to steer the ship rapidly and accurately.

  • PDF

Effect of Core Stabilization Intervention Program on Erector Spinae Contractile Properties and Isokinetic Muscle Function in Adults with Sedentary Lifestyle Patterns (코어안정화 운동이 좌식생활 패턴 성인의 척추기립근 수축 속성 및 체간 등속성 근기능에 미치는 영향)

  • Lee, Hyungwoo;An, Seungho;Jeon, Kyoungkyu
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.3
    • /
    • pp.103-110
    • /
    • 2022
  • Objective: The aim of this study was to investigate effect of core stabilization exercises on the erector spinae contractile properties and trunk isokinetic muscle function of middle age with low physical activity and sedentary lifestyle. Method: Twenty (female: n=10, male: n=10) middle-age subjects (age: 37.25 ± 6.08 years, height: 168.01 ± 6.84 cm, weight: 71.37 ± 11.75 kg) participated in this study. Tensiomyography was measured on the erector spinae, and the isokinetic trunk muscle function test was measured at an angular velocity of 60 °/s and 90 °/s. All subjects performed the core stabilization exercises for 60 min per day, 3 times a week, for 7 weeks. A paired t-test was performed with a significance level of 0.05. Results: Tensiomyography of the erector spinae revealed a significant post-exercise increase in the maximum radial displacement (p < .05) and velocity of contraction (p < .05), however, there wasn't a significant post-exercise change in the contraction time. Additionally, the isokinetic muscle function test of the trunk revealed a significant post-exercise increase in trunk extensor relative strength (p < .05) and strength ratio (p < .05). Conclusion: Our results indicated that core stabilization exercises reduced erector spinae muscle stiffness, increased the velocity of erector spinae contraction. Additionally, data showed the improvement in the trunk extensor strength help induce a more balanced development in trunk muscle.

A Study on the Correction of Straight Driving of Wheelchair Assistive Device to Move the Stairs with Wheel Type Caterpillar and Seat Position Variable Structure (차륜형 캐터필러 및 좌석 위치 가변 구조를 갖는 휠체어 계단 이동 보조기기의 직진 주행 보정에 관한 연구)

  • Su-Hong, Eom;Ji-An, Jung;Won-Young, Lee;Jin-Woo, Sin;Eung-Hyuk, Lee
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.602-613
    • /
    • 2022
  • This paper proposes an algorithm for correcting indirect situations resulting from the wheelchair moving the stairs with wheel-type caterpillar and seat position variable. For analyzing the Yawing movement model, the change of Yaw value was estimated using Roll, Pitch, and Yaw in the driving environment, and it was used as a control variable and the information of the wheel drive controller. The verification confirmed the correction of about 10° of Yawing movement within about 7 seconds. It was confirmed that the angular velocity was reduced by 47.5% in seat position change.

Periodontal Response According to the Timing of Orthodontic Force Application alter Bone Graft into Angular Bony Defect in the Dog (성견에서 수직적 골결손부에 골이식후 교정력 적용시기에 따른 치주조직의 반응)

  • Lee, Sang-Yeol;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.31 no.3 s.86
    • /
    • pp.369-379
    • /
    • 2001
  • The aim of this study was to investigate the periodontal response according to the timing of orthodontic force application after bone graft into the angular bony defect. Nine dogs were divided into three groups, 2, 4, and 6 weeks, according to the timing of orthodontic force application after bone graft. Periodontal angular bony defects were created surgically at the distal aspect of both maxillary third incisors. Two weeks later, flap operation was performed to eliminate inflammation and reference notch was made on the root surface at the level of the bottom of each defect. Demineralized freeze-dried bone was implanted on the left side whereas only debridement was done on the other side. Experimental tooth movement was executed during 8 weeks on both graft and non-graft sides. After 2 weeks of retention period, animals were sacrificed for histologic specimens. The results were obtained as follows 1 New bone formation was more pronounced in the graft side than in the non-grad side in all experimental animals. 2. In the 6-week group, new bone and cementum formation was observed in more than half from the notch to the cemento-enamel junction, and the zone of connective tissue attachment was found without apical migration of junctional epithelium. 3. In the 4-week group, the amount of new bone formation was smaller than in the 6-week group whereas the overall remodeling pattern was similar. 4. New bone formation was confined to around the notch and the junctional epithelium migrated apically to the level of the notch with no connective tissue attachment and cementum formation in the 2-week group. The results of the present study suggest that periodontal response may be influenced by the timing of orthodontic force application after bone graft into angular bony defect.

  • PDF

Robust Sliding Mode Controller Design for the Line-of-Sight Stabilization

  • Kim, Moon-Sik;Yun, Jung-Joo;Yoo, Gi-Sung;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.614-619
    • /
    • 2004
  • The line-of-sight (LOS) stabilization system is a precision electro-mechanical gimbals assembly for rejecting vibration to isolate the load from its environment and point toward the target in a desired direction. This paper describes the design of gimbals system to reject the disturbance and to improve stabilization. To generate movement commands for the actuators in the stabilization system, the control system uses a sensor of angular rotation. The controller is a DSP with transducer and actuator interfaces. Unknown parameters of the gimbals are estimated using the signal compression method. The cross-correlation coefficient between the impulse response from the assumed model and the one from model of the gimbals is used to obtain the better estimation. And SMCPE (sliding mode control with perturbation estimation) is used to control the gimbals. SMCPE provides robustness of the control against the modeling deficiencies and unknown disturbances. In order to compare the performance of SMCPE with the classical SMC, a sample test result is presented.

  • PDF

A miniaturized attitude estimation system for a gesture-based input device with fuzzy logic approach

  • Wook Chang;Jing Yang;Park, Eun-Seok;Bang, Won-Chul;Kang, Kyoung-Ho;Cho, Sung-Jung;Kim, Dong-Yoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.616-619
    • /
    • 2003
  • In this paper, we develop an input device equipped with accelerometers and gyroscopes. The installed sensors measure the inertial measurements i.e., accelerations and angular rates produced by the movement of the system when a user is writing on the plane surface or in the three dimensional space. The gyroscope measurement are integrated once to give the attitude of the system and consequently used to remove the gravity included in the acceleration measurements. The compensated accelerations bin doubly integrated to yield the position of the system. Due to the integration processes involved in recovering the users'motions, the accuracy of the position estimation significantly deteriorates with time. Among various error sources of the system incorrect estimation of attitude causes the largest portion of the positioning error since the gravity is not fully cancelled. In order to solve this problem, we propose a Kalman filler-based attitude estimation algorithm which fuses measurement data from accelerometers and gyroscopes by fuzzy logic approach. In addition, the online calibration of the gyroscope biases are performed in parallel with the attitude estimation to give more accurate attitude estimation. The effectiveness and the feasibility of the presented system is demonstrated through computer simulations and actual experiments.

  • PDF

Comparison of Cognitive Task-Directed Motor Control Ability in Younger and Older Subjects (인지적 요소가 포함된 과제 수행 시 젊은 성인과 노인의 동작 조절 비교)

  • Lee, Soo-A;Choi, Jong-Duk
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.1
    • /
    • pp.51-59
    • /
    • 2017
  • PURPOSE: This study compared cognitive task-directed functional motor control ability for reaching and kicking movements in younger and older adults. METHODS: Subjects were divided into two groups of younger and older adults, with 13 subjects in each group. Subjects were required to perform a dual task combining a functional movement and cognitive component. The task consisted of reaching and kicking movements. Participants performed indicated movements when a target appeared on a monitor. The target randomly appeared on the monitor every 10 seconds. The total performance time (TPT), joint angular velocity (JAV), and muscle activation time were used to evaluate motor control ability. RESULTS: There were significant differences in all evaluation factors in a comparison of younger and older adults (p<.05). TPT was significantly shorter in older adults, and JAV and muscle activation time were significantly slower than that in the younger adult group. Although the results for older adults were within the normal range for functional assessment, their motor control abilities were significantly worse for cognitive tasks compared with those of younger adults. CONCLUSION: The results of this study indicated that a motor control assessment tool using a cognitive task would be helpful in assessment of motor control ability in healthy older adults.

Modeling the Selectivity of the Cod-end of a Trawl Using Chaotic Fish Behavior and Neural Networks

  • Kim, Yong-Hae;Wardle, Clement S.
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.1
    • /
    • pp.61-69
    • /
    • 2008
  • Using empirical data of fish performance and physiological limits as well as physical stimuli and environmental data, a cod-end selectivity model based on a chaotic behavior model using the psycho-hydraulic wheel and neural-network approach was established to predict fish escape or herding responses in trawl and cod-end designs. Fish responses in the cod-end were categorized as escape or herding reactions based on their relative positions and reactions to the net wall. Fish movements were regulated by three factors: escape time, a visual looming effect, and an index of body girth-mesh size. The model was applied to haddock in a North Sea bottom trawl including frequencies of movement components, swimming speed, angular velocity, distance to net wall, and the caught-fish ratio; simulation results were similar to field observations. The ratio of retained fish in the cod-end was limited to 37-95% by optomotor coefficient values of 0.3-1.0 and to 13-67% by looming coefficient values of 0.1-1.0. The selectivity curves generated by this model were sensitive to changes in mesh size, towing speed, mesh type, and mesh shape.