• Title/Summary/Keyword: Angular Dependence

Search Result 122, Processing Time 0.027 seconds

Vibration-Rotation Coupling in a Quasilinear Symmetric Triatomic Molecule

  • Lee, Jae-Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.228-236
    • /
    • 1994
  • The effect of the vibration mode coupling induced by the vibration-rotation interaction on total energy was investigated for the states with zero total angular momentum(J=0) in a quasilinear symmetric triatomic molecule of $AB_2$ type using a model potential function with a slight potential barrier to linearity. It is found that the coupling energy becomes larger for the levels of bend and asymmetric stretch modes and smaller for symmetric stretch mode as the excitation of the vibrational modes occurs. The results for the real molecule of $CH_2^+$, which is quasilinear, generally agree with the results for the model potential function in that common mode selective dependence of coupling energy is exhibited in both cases. The differences between the results for the model and real potential function in H-C-H system are analyzed and explained in terms of heavy mixing of the symmetric stretch and bend mode in excited vibrational states of the real molecule of $CH_2^+$. It is shown that the vibrational mode coupling in the potential energy function is primarily responsible for the broken nodal structure and chaotic behavior in highly excited levels of $CH_2^+$ for J= 0.

Faraday Rotation Measure and Cosmic Magnetic Field

  • Cho, Hyunjin;Ryu, Dongsu;Ha, Ji-hoon;Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.39.3-40
    • /
    • 2021
  • The Faraday rotation measure (RM) of extragalactic radio sources is one of tools that can explore the magnetic field in the cosmic web. We have investigated the statistical properties of the RM using the data of simulations for the large-scale structure formation of the universe. Various modelings for the cosmic magnetic field including the redshift dependence, and the intrinsic RM of radio sources have been considered. We here present the structure functions (SFs) of simulated RMs for small angular separations, and compare the SFs with observations, specifically those from the NRAO VLA Sky Survey (NVSS) and LOFAR Two-Metre Sky Survey (LoTSS). We then discuss the implications of our work.

  • PDF

Development of Radiation Shielding Analysis Program Using Discrete Elements Method in X-Y Geometry (2차원 직각좌표계에서 DEM을 이용한 방사선차폐해석 프로그램개발)

  • Park, Ho-Sin;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.51-62
    • /
    • 1993
  • A computational program [TDET] of the particle transport equation is developed on radiation shielding problem in two-dimensional cartesian geometry based on the discrete element method. Not like the ordinary discrete ordinates method, the quadrature set of angles is not fixed but steered by the spatially dependent angular fluxes. The angular dependence of the scattering source term in the particle transport equation is described by series expansion in spherical harmonics, and the energy dependence of the particles is considered as well. Three different benchmark tests are made for verification of TDET : For the ray effect analysis on a square absorber with a flat isotropic source, the results of TDET calculation are quite well conformed to those of MORSE-CG calculation while TDET ameliorates the ray effect more effectively than S$_{N}$ calculation. In the analysis of the streaming leakage through a narrow vacuum duct in a shield, TDET shows conspicuous and remarkable results of streaming leakage through the duct as well as MORSE-CG does, and quite better than S$_{N}$ calculation. In a realistic reactor shielding situation which treats in two cases of the isotropic scattering and of linearly anisotropic scattering with two groups of energy, TDET calculations show local ray effect between neighboring meshes compared with S$_{N}$ calculations in which the ray effect extends broadly over several meshes.eshes.

  • PDF

The Hyperfine Interaction for the FeIn2S4 by Mössbauer Spectroscopy (뫼스바우어 효과를 통한 FeIn2S4에서의 Fe2+ 초미세 상호 작용 연구)

  • Son, Bae-Soon;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.30-33
    • /
    • 2007
  • The $FeIn_2S_4$ exhibits an inverse spinel which Fe ions are occupied to the octahedral(B) site, while In ions are occupied to both the tetrahedral(A) and the octahedral(B) site. The $N\'{e}el$ temperature($T_N$) is determined to be 13 K. The effective moment of $FeIn_2S_4$ found to be $5.094{\mu}_B$ from the fit of Curie-Weiss inverse susceptibility for the temperature range over $T_N$, implying angular momentum contribution. The angular momentum contribution is shown in $M\"{o}ssbauer$ spectra for the antiferromagnetic ordering region($T{\leq}\;13K$), too. A weak $Fe^{2+}(B)-S^2-Fe^{2+}(B)$ interaction is responsible for a low $N\'{e}el$ temperature($T_N$) in $FeIn_2S_4$ system. The temperature dependence of electric quadrupole interaction is explained by z-axial crystalline field energy.

A Convergence Test of the Full-potential Linearized Augmented Plane Wave (FLAPW) Method: Ferromagnetic Bulk BCC Fe

  • Seo, Seung-Woo;Song, You-Young;Gul, Rahman;Kim, In-Gee;Weinert, M.;Freeman, A.J.
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.137-143
    • /
    • 2009
  • The convergence behavior of the all-electron full-potential linearized augmented plane-wave (FLAPW) method with the explicit orthogonalization (XO) scheme is tested on ferromagnetic bulk body-centered-cubic Fe. Applying a commonly used criterion relating the plane-wave and angular momentum cutoffs, $l_{max}\;=\;R_{MT}K_{max}$, where $R_{MT}$ is the muffin-tin (MT) sphere radius and $K_{max}$ is the plane-wave cutoff for the basis - the total energy is converged and stable for $K_{max}R_{MT}$ = 10. The total energy convergence dependence on the star-function cutoff, $G_{max}$, is minimal and so a $G_{max}$ of 3$K_{max}$ or a large enough $G_{max}$ is a reasonable choice. We demonstrate that the convergence with respect to $l_{max}$ or a fixed large enough $G_{max}\;and\;K_{max}$ are independent, and that $K_{max}$ provides a better measure of the convergence than $R_{MT}K_{max}$. The dependence of the total energy on $R_{MT}$ is shown to be small if the core states are treated equivalently, and that the XO scheme is able to treat systems with significantly smaller $R_{MT}$ than the standard LAPW method. For converged systems, the calculated lattice parameter, bulk modulus, and magnetic moments are in excellent agreement with the experimental values.

A Study on the Preparation of UPE Resins with Different Glycol Molar Ratios and Their Physical Properties : 3. Estimation of Viscoelastic and Critical Surface Tension of UPE Liquid Resins (글리콜 몰비가 다른 불포화 폴리에스테르 수지의 제조 및 물성에 관한 연구 : 3. UPE 액상 수지의 임계표면장력 및 점탄성 평가)

  • 이상효;안승국;이장우
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.589-598
    • /
    • 2000
  • In this study, various unsaturated polyester (UPE) resins were prepared from the condensation polymerization of mixtures of saturated (isophthalic acid : IPA) and unsaturated (maleic anhydride : MA) dibasic acids with propylene glycol (PG), neopentyl glycol (NPG). The critical surface tension (Υ$_{c}$) for the surface characteristics of a solid were estimated by Zisman plot, and the structure-property relationship was investigated by measuring the rheology of resins. The values of Υ$_{c}$ for glass of solid were 30.5 mNㆍm$^{-1}$ for UPE resin liquids. As the content of NPG in a PG/NPG glycol mixture increased, both the contact angle and the surface tension of the UPE resin liquids were found to decrease. The dynamic viscoelasticities of UPE resins with different glycol molar ratios were also measured. Shear rate dependence of viscosity and angular frequency dependence of storage, and loss modulus tended to decrease with increasing NPG content.

  • PDF

Ultrasonic Backscattering on Painted Rough Surface at near Rayleigh Angle (레일리각 근처에서 도색된 거친 표면으로부터 후방 산란된 초음파)

  • Kwon, Sung-D.;Kwon, Yong-G.;Yoon, Seok-S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • The angular dependence (or profile) of backscattered ultrasound was measured for steel specimens with a range of surface roughness, $1{\sim}71{\mu}m$. Backscattering profiles at or near the Rayleigh angle still showed roughness dependence while the assessment of surface roughness via normal profile became impossible due to the paint layer masking the roughness. The peak amplitude directly radiated at the Rayleigh angle was proportional to the surface roughness, while the averaged peak amplitude radiated from the backward propagating Rayleigh wave, produced by reflection at a corner, was inversely proportional. In the painted specimens, the linearity of direct backward radiation with the roughness was observed even at the roughness of less than three hundredths of a wavelength, and the abnormal multiple bark reflection caused by periodic roughness disappeared.

Effects of Oxidation and Hot Corrosion on the Erosion of Silicon Nitride

  • Kim, Jong Jip
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.136-139
    • /
    • 2005
  • The effect of oxidation and hot corrosion on the solid particle erosion was investigated for hot-pressed silicon nitride using as-polished, pre-oxidized and pre-corroded specimens by molten sodium sulfates. Erosion tests were performed at 22, 500 and $900^{\circ}C$ using angular silicon carbide particles of mean diameter $100{\mu}m$. Experimental results show that solid particle erosion rate of silicon nitride increases with increasing temperature for as-polished or pre-oxidized specimens in consistent with the prediction of a theoretical model. Erosion rate of pre-oxidized specimens is lower than that of as-polished specimens at $22^{\circ}C$, but it is higher at $900^{\circ}C$. Lower erosion rate at $22^{\circ}C$ in the pre-oxidized specimens is attributed due to the blunting of surface flaws, and the higher erosion rate at $900^{\circ}C$ is due to brittle lateral cracking. Erosion rate of pre-corroded specimens decreases with increasing temperature. Less erosion at $900^{\circ}C$ than at $22^{\circ}C$ is associated with the liquid corrosion products sealing off pores at $900^{\circ}C$ and the absence of inter-granular crack propagation observed at $22^{\circ}C$.

Clustering properties and halo occupation of Lyman-break galaxies at z ~ 4

  • Park, Jaehong;Kim, Han-Seek;Wyithe, Stuart B.;Lacey, Cedric G.;Baugh, Carlton M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.59.3-60
    • /
    • 2015
  • We investigate the clustering properties of Lyman-break galaxies (LBGs) at z ~ 4. Using the hierarchical galaxy formation model GALFORM, we predict the angular correlation function (ACF) of LBGs and compare this with the measured ACF from combined survey fields consisting of the Hubble eXtreme Deep Field (XDF) and CANDELS. We find that the predicted ACF is in a good agreement with the measured ACFs. However, when we divide the model LBGs into bright and faint subset, the predicted ACFs are less consistent with observations. We quantify the dependence of clustering on luminosity and show that the fraction of satellite LBGs is important for determining the amplitude of ACF at small scales. We find that central LBGs predominantly reside in ${\sim}10^{11}h^{-1}M_{solar}$ haloes and satellites reside in haloes of mass ${\sim}10^{12}-10^{13}h^{-1}M_{solar}$. The model predicts fewer bright satellite LBGs than is inferred from the observation. LBGs in the tails of the redshift distribution contribute significant additional clustering signal, especially on small scales. This spurious clustering may affect the interpretation of the halo occupation distribution, including the minimum halo mass and abundance of satellite LBGs.

  • PDF

GEOMAGNETIC FIELD VARIATIONS DURING SOLAR ECLIPSES AND THE GEOGRAPHIC LOCATION OF OBSERVING SITES

  • Kim, Jung-Hee;Chang, Heon-Young
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.4
    • /
    • pp.119-127
    • /
    • 2018
  • We examine whether the solar eclipse effect is dependent on the geographic conditions under which the geomagnetic field variations are recorded. We concentrate our attention on the dependence of the solar eclipse effect on a number of factors, including, the magnitude of a solar eclipse (defined as the fraction of the angular diameter of the Sun being eclipsed), the magnetic latitude of the observatory, the duration of the observed solar eclipse at the given geomagnetic observatory, and the location of the geomagnetic observatory in the path of the Moon's shadow. We analyze an average of the 207 geomagnetic field variation data sets observed by 100 INTERMAGNET geomagnetic nodes, during the period from 1991 to 2016. As a result, it is demonstrated that (1) the solar eclipse effect on the geomagnetic field, i.e., an increase in the Y component and decreases in the X, Z and F componenets, becomes more distinct as the magnitude of solar eclipse increases, (2) the solar eclipse effect is most conspicuous when the modulus of the magnetic latitude is between $30^{\circ}$ and $50^{\circ}$, (3) the more slowly Moon's shadow passes the geomagnetic observatory, the more clear the solar eclipse effect, (4) the geomagnetic observatory located in the latter half of the path of Moon's shadow with respect to the position of the greatest eclipse is likely to observe a more clear signal. Finally, we conclude by stressing the importance of our findings.