• Title/Summary/Keyword: Angle-of-attack

Search Result 739, Processing Time 0.027 seconds

A Study of Aerodynamic Modelling for Fin Unfolding Motion Analysis (공력면 전개 모사를 위한 공력 모델링 연구)

  • Jung, Suk-Young;Yoon, Sung-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.420-427
    • /
    • 2008
  • For simulation of a fin unfolding motion for the various aerodynamic conditions, equations and moments applying to the unfolding fin were modelled. Aerodynamic roll moment consists of the static roll moment and the damping moment, which were obtained through wind tunnel tests and numerical analyses respectively. Panel method was used to compute the roll damping coefficient with deflected fin, whose angle was equivalent to angle of attack due to the deployment motion. Roll damping coefficient is a function of angle of attack, sideslip angle, and deployment angle but not of angular velocity of deployment. Simulation with aerodynamic damping model gave more similar deployment time compared to fin deployment test results.

A Study on Control Law Augmentation in order to Improve Aircraft Controllability and Stability in High Angle of Attack (고받음각에서 조종성능 및 안정성 증강을 위한 제어법칙에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Lee, Dong-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.60-67
    • /
    • 2005
  • Modern version of supersonic jet fighter aircraft must have guaranteed appropriate controllability and stability in HAoA(high angle of attack). Limit value of aircraft entering into the deep stall in HAoA is related to aircraft configuration design. But, In order to guarantee the aircraft's safety in HAoA, control law for HAoA region implemented in digital Fly-By-Wire flight control system of supersonic jet fighter. The AoA limiter is designed for positive HAoA in longitudinal control law. But, aircraft departure during aggressive negative pitch maneuver such as push over in departure resistance flight test. Therefore negative AoA limiter is needed in longitudinal control law. Result of T-50 flight test show that the AoA is exceed the limit value during aggressive positive pitch maneuver in pull up of power approach mode. In this paper, the AoA limit control law in positive and negative AoA was proposed in order to improve aircraft controllability and stability.

Forced Convection Heat Transfer from an Inner Surface of a Two-Dimensional Rectangular Cavity (이차원 사각형 공동 내부에서의 강제 대류 열전달)

  • Seo, T.B.;Han, K.Y.;Kange, Y.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.77-84
    • /
    • 2002
  • In order to investigate forced convection heat transfer due to the wind from the inner surface of a cavity receiver for a parabolic dish type solar energy collecting system, a two-dimensional rectangular cavity receiver is prepared and installed in a wind tunnel. The convection heat transfer coefficient of the inner surface of the receiver is dependent on the direction and the velocity of the wind. The attack angle of the cavity and the air velocity in the tunnel are controlled in a wide range so that the effects of the attack angle and the wind velocity on the heat transfer coefficient can be studied. The skirt is installed at the aperture of the cavity in order to reduce convective heat loss. The effects of the length and the installation angle of the skirt on convection heat transfer of the cavity are tested. It is found that convection heat loss can be significantly reduced by installing the skirt. Also, it is known that heat transfer from the cavity can be minimized if the angle of the skirt is $90^{\circ}$ to the outer surface of the cavity.

Numerical Investigation of the Shock Interaction Effect on the Lateral Jet Controlled Missile

  • Min, Byung-Young;Lee, Jae-Woo;Byun, Yung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.357-364
    • /
    • 2004
  • A computational study on the supersonic flow around the lateral jet controlled missile has been performed. Case studies have been performed by comparing the normal force coefficient and the moment coefficient of a missile body for several different jet flow conditions, angle of attacks, circumferential jet locations, and spouting jet angles. For the several different jet flow conditions, which include the jet pressure, the jet Mach number, and the corresponding jet mass flow rate, the results show that the normal force coefficient is almost proportional to the jet thrust but the moment coefficient is not. Distinctly different flow phenomena can be noticed as the pressure ratio and the jet Mach number increase. By investigating the angle of attack effect to the normal force and the pitching moment, it has been identified that the normal force and the pitching moment show nonlinearity with respect to the angle of attack. From the detailed flow field analyses with respect to the jet flow conditions and the angle of attacks, it is verified that most of the normal force loss and the pitching moment generation are taken place at the low-pressure region behind the jet nozzle. Furthermore, the normal force and the pitching moment characteristics of the missile have been identified by comparing different circumferential jet locations and spouting jet angles.

  • PDF

Experimental Study on Supercavitated Body with Static Angle-of-attack (정적 받음각을 갖는 초공동화 수중체에 대한 실험적 연구)

  • Lee, Jun-Hee;Paik, Bu-Geun;Kim, Kyoung-Youl;Kim, Min-Jae;Kim, Seonhong;Lee, Seung-Jae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.541-549
    • /
    • 2019
  • In the present study, we investigated planing forces of supercavitated bodies by using the supercavitation shape produced by the disk type cavitator. The cavity shapes are observed to find the immersion draft and planing angle when the stern of the supercavitated body is partially immersed in the water. To make the planing the angle-of-attack (AOA) of the supercavitated body is varied statically against the main flow and the planing tests are carried out for different body shapes that are changed systematically. The drag, lift and pitch moment acting on the body are measured to understand the relation between the planing force and the immersion draft of the supercavitated body. It is found that the planing force increased in general linearly with the immersion draft ratio and the planing angle is certainly not proportional to the immersion draft ratio.

Two-Dimensional Mechanism of Hovering Flight by Flapping Wings (날개짓에 의한 공중정지비행의 이차원 메카니즘)

  • Kim, Do-Kyun;Choi, Hae-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.759-764
    • /
    • 2003
  • Numerical simulations are conducted to investigate the mechanism of hovering flight by single flapping wing, and to examine the effect of the phase difference between the fore- and hindwings in hovering flight by two flapping wings. The numerical method used is based on an immersed boundary method in Cartesian coordinates. The Reynolds number considered is Re=150 based on the maximum translational velocity and chord length of the wing. For single flapping wing, the stroke plane angles are $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$ and the downstroke angles of attack are varied for each stroke angle. Results show that for each stroke plane angle, there is an optimal angle of attack to maximize the vertical force. Below the stroke angle of $60^{\circ}$, wake capturing reduces the negative vertical force during the upstroke. For two flapping wings, The phase lags of the hindwing are $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$. The amplitudes of the stroke are 2.5 and 4.0 times the chord length at each phase lag. The results show that maximum vertical force is generated when the phase lag is zero, and the amplitude of the vertical force is minimum at the phase lag of $180^{\circ}$.

  • PDF

On discrete nonlinear self-tuning control

  • Mohler, R.-R.;Rajkumar, V.;Zakrzewski, R.-R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1659-1663
    • /
    • 1991
  • A new control design methodology is presented here which is based on a nonlinear time-series reference model. It is indicated by highly nonlinear simulations that such designs successfully stabilize troublesome aircraft maneuvers undergoing large changes in angle of attack as well as large electric power transients due to line faults. In both applications, the nonlinear controller was significantly better than the corresponding linear adaptive controller. For the electric power network, a flexible a.c. transmission system (FACTS) with series capacitor power feedback control is studied. A bilinear auto-regressive moving average (BARMA) reference model is identified from system data and the feedback control manipulated according to a desired reference state. The control is optimized according to a predictive one-step quadratic performance index (J). A similar algorithm is derived for control of rapid changes in aircraft angle of attack over a normally unstable flight regime. In the latter case, however, a generalization of a bilinear time-series model reference includes quadratic and cubic terms in angle of attack. These applications are typical of the numerous plants for which nonlinear adaptive control has the potential to provide significant performance improvements. For aircraft control, significant maneuverability gains can provide safer transportation under large windshear disturbances as well as tactical advantages. For FACTS, there is the potential for significant increase in admissible electric power transmission over available transmission lines along with energy conservation. Electric power systems are inherently nonlinear for significant transient variations from synchronism such as may result for large fault disturbances. In such cases, traditional linear controllers may not stabilize the swing (in rotor angle) without inefficient energy wasting strategies to shed loads, etc. Fortunately, the advent of power electronics (e.g., high-speed thyristors) admits the possibility of adaptive control by means of FACTS. Line admittance manipulation seems to be an effective means to achieve stabilization and high efficiency for such FACTS. This results in parametric (or multiplicative) control of a highly nonlinear plant.

  • PDF

Control Effect of Hydro-kinetic Force of a Special Rudder attached Flap (플랩이 부착된 특수타의 동유체력 제어효과에 관한 연구)

  • Gim, Ok-Sok;Lee, Gyoung-Woo;Ahn, Young-Kyu
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.771-776
    • /
    • 2008
  • The main purpose in having a control surface on a ship is to control the motion of it. It is the important element to determine the maneuvering characteristics of the ship. In this paper, the measured results has been compared with each other to predict the performance characteristics of flapped rudder's 2-dimensional section at $Re=3.0{\times}10^4$ using 2-frame grey level cross correlation PIV method. The side force of the rudder could be mainly improved by the lift force at 10 degrees angle of attack and the drag force at 20 degrees angle of attack. The separation point and boundary layer could be controlled by the change of the only flap's angle at 10 degrees angle of attack.

Study on the Flow Characteristics of Supersonic Air Intake at Mach 4 (마하4 초음속 공기 흡입구 유동 특성에 관한 연구)

  • ;;;;Shigeru , Aso
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.61-70
    • /
    • 2006
  • A Supersonic air intake model was designed for the high performance ramjet and dual-mode scramjet engine to operate at Mach 4 flight condition. The air intake was tested in the blowdown-type wind tunnel of Kyushu University to identify the internal flow characteristics corresponding to the flight parameters such as the back pressure, angle of attack and angle of yaw. Flow visualization was achieved by the Schlieren and oil flow visualization techniques. The intake performance was analyzed quantitatively based on the surface pressure and total Pressure measurements. The experimental results were compared with the computational fluid dynamics results. The present study exhibits the fundamental but rarely found experimental results of the high Mach number supersonic air intake.