• 제목/요약/키워드: Angle shear connector

검색결과 15건 처리시간 0.018초

Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors

  • Chahnasir, E. Sadeghipour;Zandi, Y.;Shariati, M.;Dehghani, E.;Toghroli, A.;Mohamad, E. Tonnizam;Shariati, A.;Safa, M.;Wakil, K.;Khorami, M.
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.413-424
    • /
    • 2018
  • The factors affecting the shear strength of the angle shear connectors in the steel-concrete composite beams can play an important role to estimate the efficacy of a composite beam. Therefore, the current study has aimed to verify the output of shear capacity of angle shear connector according to the input provided by Support Vector Machine (SVM) coupled with Firefly Algorithm (FFA). SVM parameters have been optimized through the use of FFA, while genetic programming (GP) and artificial neural networks (ANN) have been applied to estimate and predict the SVM-FFA models' results. Following these results, GP and ANN have been applied to develop the prediction accuracy and generalization capability of SVM-FFA. Therefore, SVM-FFA could be performed as a novel model with predictive strategy in the shear capacity estimation of angle shear connectors. According to the results, the Firefly algorithm has produced a generalized performance and be learnt faster than the conventional learning algorithms.

Experimental investigation of low-velocity impact characteristics of steel-concrete-steel sandwich beams

  • Sohel, K.M.A.;Richard Liew, J.Y.;Alwis, W.A.M.;Paramasivam, P.
    • Steel and Composite Structures
    • /
    • 제3권4호
    • /
    • pp.289-306
    • /
    • 2003
  • A series of tests was conducted to study the behaviour of steel-composite sandwich beams under low velocity hard impact. Damage characteristic and performance of sandwich beams with different spacing of shear connector were evaluated under impact loading. Thin steel plates were used as top and bottom skins of the sandwich beams and plain concrete was used as the core material. Shear connectors were provided by welding of angle sections on steel plates. The sandwich beams were impacted at their midpoint by a hemi-spherical nose shaped projectile dropped from various heights. Strains on steel plates were measured to study the effects of impact velocity or impact momentum on the performance of sandwich beams. Spacing of shear connectors is found to have significant effects on the impact response of the beams.

CLT-콘크리트 합성 거동을 위한 전단 연결재 부재 실험과 해석 연구 (Experimental and Analytical Study of Shear Connectors for the CLT-Concrete Composite Floor System)

  • 박아론;이기학
    • 한국공간구조학회논문집
    • /
    • 제19권1호
    • /
    • pp.65-73
    • /
    • 2019
  • This paper assesses the structural performance (force-slip response, slip modulus, and failure modes) of a CLT-concrete composite by conducting fifteen push-out test specimens. In addition, non-linear 3D finite element analysis was also developed to simulate the load-slip behavior of the CLT-concrete specimens under shear load. All 15 test specimens simulating the effect of concrete thickness, connection angle and penetration depth with four different shear connector types were built and tested to evaluate the flexural performance. Experimental results show that the maximum shear capacity for the composite action is obtained when the fixing angle is $90^{\circ}$ and the penetration depth of 95mm for SC normal screw was used to achieve ductile failure compared to other shear connectors.

Application of ANFIS technique on performance of C and L shaped angle shear connectors

  • Sedghi, Yadollah;Zandi, Yousef;Shariati, Mahdi;Ahmadi, Ebrahim;Azar, Vahid Moghimi;Toghroli, Ali;Safa, Maryam;Mohamad, Edy Tonnizam;Khorami, Majid;Wakil, Karzan
    • Smart Structures and Systems
    • /
    • 제22권3호
    • /
    • pp.335-340
    • /
    • 2018
  • The behavior of concrete slabs in composite beam with C and L shaped angle shear connectors has been studied in this paper. These two types of angle shear connectors' instalment have been commonly utilized. In this study, the finite element (FE) analysis and soft computing method have been used both to present the shear connectors' push out tests and providing data results used later in soft computing method. The current study has been performed to present the aforementioned shear connectors' behavior based on the variable factors aiming the study of diverse factors' effects on C and L shaped angle in shear connectors. ANFIS (Adaptive Neuro Fuzzy Inference System), has been manipulated in providing the effective parameters in shear strength forecasting by providing input-data comprising: height, length, thickness of shear connectors together with concrete strength and the respective slip of shear connectors. ANFIS has been also used to identify the predominant parameters influencing the shear strength forecast in C and L formed angle shear connectors.

Numerical evaluation of deformation capacity of laced steel-concrete composite beams under monotonic loading

  • Thirumalaiselvi, A.;Anandavalli, N.;Rajasankar, J.;Iyer, Nagesh R.
    • Steel and Composite Structures
    • /
    • 제20권1호
    • /
    • pp.167-184
    • /
    • 2016
  • This paper presents the details of Finite Element (FE) analysis carried out to determine the limiting deformation capacity and failure mode of Laced Steel-Concrete Composite (LSCC) beam, which was proposed and experimentally studied by the authors earlier (Anandavalli et al. 2012). The present study attains significance due to the fact that LSCC beam is found to possess very high deformation capacity at which range, the conventional laboratory experiments are not capable to perform. FE model combining solid, shell and link elements is adopted for modeling the beam geometry and compatible nonlinear material models are employed in the analysis. Besides these, an interface model is also included to appropriately account for the interaction between concrete and steel elements. As the study aims to quantify the limiting deformation capacity and failure mode of the beam, a suitable damage model is made use of in the analysis. The FE model and results of nonlinear static analysis are validated by comparing with the load-deformation response available from experiment. After validation, the analysis is continued to establish the limiting deformation capacity of the beam, which is assumed to synchronise with tensile strain in bottom cover plate reaching the corresponding ultimate value. The results so found indicate about $20^{\circ}$ support rotation for LSCC beam with $45^{\circ}$ lacing. Results of parametric study indicate that the limiting capacity of the LSCC beam is more influenced by the lacing angle and thickness of the cover plate.