• Title/Summary/Keyword: Angle Learning

Search Result 224, Processing Time 0.027 seconds

Optimal Welding Condition for the Inclined and Skewed Fillet Joints ill the Curved Block of a Ship (I) (선박 골블록의 경사 필렛 이음부의 적정 용접조건 (I))

  • PARK JU-YONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.79-83
    • /
    • 2004
  • The curved blocks which compose the bow and stem of a ship contain many skewed joints that are inclined horizontally and vertically. Most of these joints have a large fitness error and are continuously changing their form and are not easily accessible. The welding position and parameter values should be appropriately set in correspondence to the shape and the inclination of the joints. The welding parameters such as current, voltage, travel speed, and melting rate, are related to each other and their values must be in a specific limited range for the sound welding. These correlations and the ranges are dependent up on the kind and size of wire, shielding gas, joint shape and fitness. To determine these relationships, extensive welding experiments were performed. The experimental data were processed using several information processing technologies. The regression method was used to determine the relationship between current voltage, and deposition rate. When a joint is inclined, the weld bead should be confined to a the limited size, inorder to avoid undercut as well as overlap due to flowing down of molten metal by gravity. The dependency of the limited weld size which is defined as the critical deposited area on various factors such as the horizontally and vertically inclined angle of the joint, skewed angle of the joint, up or down welding direction and weaving was investigated through a number of welding experiments. On the basis of this result, an ANN system was developed to estimate the critical deposited area. The ANN system consists of a 4 layer structure and uses an error back propagation learning algorithm. The estimated values of the ANN were validated using experimental values.

Camera and LiDAR Sensor Fusion for Improving Object Detection (카메라와 라이다의 객체 검출 성능 향상을 위한 Sensor Fusion)

  • Lee, Jongseo;Kim, Mangyu;Kim, Hakil
    • Journal of Broadcast Engineering
    • /
    • v.24 no.4
    • /
    • pp.580-591
    • /
    • 2019
  • This paper focuses on to improving object detection performance using the camera and LiDAR on autonomous vehicle platforms by fusing detected objects from individual sensors through a late fusion approach. In the case of object detection using camera sensor, YOLOv3 model was employed as a one-stage detection process. Furthermore, the distance estimation of the detected objects is based on the formulations of Perspective matrix. On the other hand, the object detection using LiDAR is based on K-means clustering method. The camera and LiDAR calibration was carried out by PnP-Ransac in order to calculate the rotation and translation matrix between two sensors. For Sensor fusion, intersection over union(IoU) on the image plane with respective to the distance and angle on world coordinate were estimated. Additionally, all the three attributes i.e; IoU, distance and angle were fused using logistic regression. The performance evaluation in the sensor fusion scenario has shown an effective 5% improvement in object detection performance compared to the usage of single sensor.

CNN-based Image Rotation Correction Algorithm to Improve Image Recognition Rate (이미지 인식률 개선을 위한 CNN 기반 이미지 회전 보정 알고리즘)

  • Lee, Donggu;Sun, Young-Ghyu;Kim, Soo-Hyun;Sim, Issac;Lee, Kye-San;Song, Myoung-Nam;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.225-229
    • /
    • 2020
  • Recently, convolutional neural network (CNN) have been showed outstanding performance in the field of image recognition, image processing and computer vision, etc. In this paper, we propose a CNN-based image rotation correction algorithm as a solution to image rotation problem, which is one of the factors that reduce the recognition rate in image recognition system using CNN. In this paper, we trained our deep learning model with Leeds Sports Pose dataset to extract the information of the rotated angle, which is randomly set in specific range. The trained model is evaluated with mean absolute error (MAE) value over 100 test data images, and it is obtained 4.5951.

The Lateral Guidance System of an Autonomous Vehicle Using a Neural Network Model of Magneto-Resistive Sensor and Magnetic Fields (자기 저항 센서와 자기장의 신경회로망 모델을 이용한 자율 주행 차량 측 방향 안내 시스템)

  • 손석준;류영재;김의선;임영철;김태곤;이주상
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.211-214
    • /
    • 2000
  • This paper describes a lateral guidance system of an autonomous vehicle, using a neural network model of magneto-resistive sensor and magnetic fields. The model equation was compared with experimental sensing data. We found that the experimental result has a negligible difference from the modeling equation result. We verified that the modeling equation can be used in simulations. As the neural network controller acquires magnetic field values(B$\sub$x/, B$\sub$y/, B$\sub$z/) from the three-axis, the controller outputs a steering angle. The controller uses the back-propagation algorithms of neural network. The learning pattern acquisition was obtained using computer simulation, which is more exact than human driving. The simulation program was developed in order to verify the acquisition of the teaming pattern, learning itself, and the adequacy of the design controller. Also, the performance of the controller can be verified through simulation.

  • PDF

Intelligent Ship s Steering Gear Control System Using Linguistic Instruction (언어지시에 의한 지능형 조타기 제어 시스템)

  • Park, Gyei-Kark;Seo, Ki-Yeol
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.417-423
    • /
    • 2002
  • In this paper, we propose intelligent steering control system that apply LIBL(Linguistic Instruction Based Learning) method to steering system of ship and take the place of process that linguistic instruction such as officer s steering instruction is achieved via ableman. We embody ableman s suitable steering manufacturing model using fuzzy inference rule by specific method of study, and apply LIBL method to present suitable meaning element and evaluation rule to steering system of ship, embody intelligent steering gear control system that respond more efficiently on officer s linguistic instruction. We presented evaluation rule to constructed steering manufacturing model based on ableman s experience, and propose rudder angle for steering system, compass bearing arrival time, meaning element of stationary state, and correct ableman manufacturing model rule using fuzzy inference. Also, we apply LIBL method to ship control simulator and confirmed the effectiveness.

Intelligent Ship s Steering Gear Control System Using Linguistic Instruction (언어지시에 의한 지능형 조타기 제어 시스템)

  • 박계각;서기열
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.93-97
    • /
    • 2002
  • In this paper, we propose intelligent steering control system that apply LIBL(Linguistic Instruction Based Learning) method to steering system of ship and take the place of process that linguistic instruction such as officer's steering instruction is achieved via ableman. We embody ableman's suitable steering manufacturing model using fuzzy inference rule by specific method of study, and apply LIBL method to present suitable meaning element and evaluation rule to steering system of ship, embody intelligent steering gear control system that respond more efficiently on officer's linguistic instruction. We presented evaluation rule to constructed steering manufacturing model based on ableman's experience, and propose rudder angle for steering system, compass bearing arrival time, meaning element of stationary state, and correct ableman manufacturing model rule using fuzzy inference. Also, we apply LIBL method to ship control simulator and confirmed the effectiveness.

Learning Similarity between Hand-posture and Structure for View-invariant Hand-posture Recognition (관측 시점에 강인한 손 모양 인식을 위한 손 모양과 손 구조 사이의 학습 기반 유사도 결정 방법)

  • Jang Hyo-Young;Jung Jin-Woo;Bien Zeung-Nam
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.271-274
    • /
    • 2006
  • This paper deals with a similarity decision method between the shape of hand-postures and their structures to improve performance of the vision-based hand-posture recognition system. Hand-posture recognition by vision sensors has difficulties since the human hand is an object with high degrees of freedom, and hence grabbed images present complex self-occlusion effects and, even for one hand-posture, various appearances according to viewing directions. Therefore many approaches limit the relative angle between cameras and hands or use multiple cameras. The former approach, however, restricts user's operation area. The latter requires additional considerations on the way of merging the results from each camera image to get the final recognition result. To recognize hand-postures, we use both of appearance and structural features and decide the similarity between the two types of features by learning.

Image Stitching focused on Priority Object using Deep Learning based Object Detection (딥러닝 기반 사물 검출을 활용한 우선순위 사물 중심의 영상 스티칭)

  • Rhee, Seongbae;Kang, Jeonho;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.882-897
    • /
    • 2020
  • Recently, the use of immersive media contents representing Panorama and 360° video is increasing. Since the viewing angle is limited to generate the content through a general camera, image stitching is mainly used to combine images taken with multiple cameras into one image having a wide field of view. However, if the parallax between the cameras is large, parallax distortion may occur in the stitched image, which disturbs the user's content immersion, thus an image stitching overcoming parallax distortion is required. The existing Seam Optimization based image stitching method to overcome parallax distortion uses energy function or object segment information to reflect the location information of objects, but the initial seam generation location, background information, performance of the object detector, and placement of objects may limit application. Therefore, in this paper, we propose an image stitching method that can overcome the limitations of the existing method by adding a weight value set differently according to the type of object to the energy value using object detection based on deep learning.

A Study on a Mask R-CNN-Based Diagnostic System Measuring DDH Angles on Ultrasound Scans (다중 트레이닝 기법을 이용한 MASK R-CNN의 초음파 DDH 각도 측정 진단 시스템 연구)

  • Hwang, Seok-Min;Lee, Si-Wook;Lee, Jong-Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.4
    • /
    • pp.183-194
    • /
    • 2020
  • Recently, the number of hip dysplasia (DDH) that occurs during infant and child growth has been increasing. DDH should be detected and treated as early as possible because it hinders infant growth and causes many other side effects In this study, two modelling techniques were used for multiple training techniques. Based on the results after the first transformation, the training was designed to be possible even with a small amount of data. The vertical flip, rotation, width and height shift functions were used to improve the efficiency of the model. Adam optimization was applied for parameter learning with the learning parameter initially set at 2.0 x 10e-4. Training was stopped when the validation loss was at the minimum. respectively A novel image overlay system using 3D laser scanner and a non-rigid registration method is implemented and its accuracy is evaluated. By using the proposed system, we successfully related the preoperative images with an open organ in the operating room

A deep learning-based approach for feeding behavior recognition of weanling pigs

  • Kim, MinJu;Choi, YoHan;Lee, Jeong-nam;Sa, SooJin;Cho, Hyun-chong
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1453-1463
    • /
    • 2021
  • Feeding is the most important behavior that represents the health and welfare of weanling pigs. The early detection of feed refusal is crucial for the control of disease in the initial stages and the detection of empty feeders for adding feed in a timely manner. This paper proposes a real-time technique for the detection and recognition of small pigs using a deep-leaning-based method. The proposed model focuses on detecting pigs on a feeder in a feeding position. Conventional methods detect pigs and then classify them into different behavior gestures. In contrast, in the proposed method, these two tasks are combined into a single process to detect only feeding behavior to increase the speed of detection. Considering the significant differences between pig behaviors at different sizes, adaptive adjustments are introduced into a you-only-look-once (YOLO) model, including an angle optimization strategy between the head and body for detecting a head in a feeder. According to experimental results, this method can detect the feeding behavior of pigs and screen non-feeding positions with 95.66%, 94.22%, and 96.56% average precision (AP) at an intersection over union (IoU) threshold of 0.5 for YOLOv3, YOLOv4, and an additional layer and with the proposed activation function, respectively. Drinking behavior was detected with 86.86%, 89.16%, and 86.41% AP at a 0.5 IoU threshold for YOLOv3, YOLOv4, and the proposed activation function, respectively. In terms of detection and classification, the results of our study demonstrate that the proposed method yields higher precision and recall compared to conventional methods.