• 제목/요약/키워드: Angle Head Spindle

검색결과 2건 처리시간 0.018초

협소 공간 절삭가공용 앵글 헤드 스핀들 케이스 소형화에 대한 연구 (A Study on the Miniaturization of Angle Head Spindle Case for Cutting in Narrow Spaces)

  • 성철훈;한성길;김성훈;송철기
    • 한국기계가공학회지
    • /
    • 제18권6호
    • /
    • pp.98-105
    • /
    • 2019
  • In order to improve the fuel economy and dynamic behavior of automobiles, the weight reduction tendency of automobile parts is obvious. Also, in order to maximize assembly and maintenance convenience, various parts are integrated and modularized. Multi-piece methods require many manufacturing processes and become a factor of lowering the strength of parts. It is advantageous to overcome the disadvantages by integrally manufacturing to reduce the processing steps and ensure the strength of the parts. However, when it is necessary to process in a narrow space inside the part, it is impossible to process with the existing spindle. The angle head spindle is only a component of a machine tool, but it is a core part that requires high technology and is highly utilizable in products requiring high precision machining. Therefore, various and continuous studies needs for angle head spindles in areas such as vibration absorption, operational safety, excellent dimensional stability, and strength. In this paper, we propose an optimal design for angle head spindle by performing structural analysis and shape optimization for angle head spindle gear and case.

3.5인치 HDD용 FDB스핀들 시스템의 훨링, 플라잉과 틸팅 거동에 관한 연구 (Experimental Study on the Whirling, Tilting and Flying Motion of the FDB Spindle System of a 3.5' HDD)

  • 오승혁;이상훈;장건희
    • 한국소음진동공학회논문집
    • /
    • 제15권1호
    • /
    • pp.39-45
    • /
    • 2005
  • This research develops an experimental method to measure the motion of a FDB spindle system with a 3.5' disk by using three capacitance probes fixed on the xyz-micrometers, and it shows that a FDB spindle system has the whirling, flying and tilting motion. It also shows that the whirling, flying and tilting motion converge very quickly to the steady state at the same time when the rotor reaches the steady-state speed. However, they are quite large even at the steady state when they are compared with the 10nm flying height of a magnetic head. For the FDB spindle system used in this experiment, the whirl radius and the peak-to-peak variation of flying height and tilting angle at the steady-state speed of 7,200rpm are 0.675m, 30nm and $5.758\times10^{-3^{\circ}}$, respectively, so that the radial motion of the FDB spindle system exceeds a track pitch of a 3.5' HDD with 90,000 TPI.