• Title/Summary/Keyword: AngiotensinII

Search Result 257, Processing Time 0.023 seconds

Cloning of Pig Kidney cDNA Encoding an Angiotensin I Converting Enzyme (돼지 신장의 Angiotensin I Converting Enzyme cDNA 클로닝)

  • Yoon, Jang-Ho;Yoon, Joo-Ok;Hong, Kwang-Won
    • Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.293-297
    • /
    • 2006
  • Angiotensin converting enzyme(ACE) is a zinc-containing dipeptidase widely distributed in mammalian tissues and is thought to play a significant role in blood pressure regulation by hydrolyzing angiotensin I to the potent vasoconstrictor, angiotensin II. Recently, the presence of ACE in pig ovary was reported and the ACE from pig kidney was isolated and characterized. However no nucleotide sequence of the ACE gene from pig is yet known. We report here the cloning of the ACE cDNA from pig kidney by using the reverse transcriptase-polymerase chain reaction. The complete amino acid sequence deduced from the cDNA contains 1309 residues with a molecular mass of 150 kDa, beginning with a signal peptide of 33 amino acids. Amino acid sequence analysis showed that pig kidney ACE is also probably anchored by a short transmembrane domain located near the C-terminus. This protein contains a tandem duplication of the two homologous amino acid peptidase domain. Each of these two domains bears a putative metal-binding site (His-Glu-Met-Gly-His) identified in mammalian somatic ACE. The alignment of pig ACE amino acid sequence with human, rabbit, and mouse reveals that both two domains have been highly conserved during evolution.

Angiotensin I Converting Enzyme Inhibitor Derived from fermented Mussel, Mytilus edulus

  • Je, Jae-Young;Park, Pyo-Jam;Byun, Hee-Guk;Kim, Se-Kwon;Kim, Jong-Bae;Chang, Soo-Hyun
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2002.10a
    • /
    • pp.191-192
    • /
    • 2002
  • Angiotensin I converting enzyme [EC 3.4.15.11 (ACE) is important in the maintenance of blood pressure. The enzyme removes histidyl-leucine from angiotensin I to form the blood-vessel-constricting octapeptide, angiotensin II, and degrades vasodilative bradykinin in blood vessels and stimulates e release of aldosterone in the adrenal cortex. (omitted)

  • PDF

Effects of Ginkgo biloba Extract (EGb 761) on the Enalapril-induced ACE Inhibition in SHRs (SHR에 있어 Enalapril의 ACE억제효과에 대한 Ginkgo biloba Extract(EGb 761)의 영향)

  • 이영미;염윤기;신완균;손의동;안형수
    • YAKHAK HOEJI
    • /
    • v.45 no.1
    • /
    • pp.93-100
    • /
    • 2001
  • Drug inetraction between of enalapril-induced angiotensin converting enzym) inhibitory effect and Ginkgo biloba Ext.-induced antioxidant action was evaluated in spontaneously hypertensive rats. Combination treatment of enalapril (20 mg/kg/day p.o.) and Ginkgo biloba Ext. (60 mg/kg/day, p.o.) for 6 weeks in drinking water to SHRs resulted the inhibition of ACE activity in lung tissue, angiotensin I-induced pressure response and plasma angiotensin II concentration as similar to enalapril alone treatment. But these effects were sustained after 1 week withdrawal of enalapril and Ginkgo biloba Ext. co-administeration. Also, coadministered group did not increase the concentration of bradykinin in lung tissue, which were different from enalapril alone treated group. Co-administration of enalapril and Ginkgo biloba Ext. inhibited the hemolysis induced by UV B type, even Ginkgo biloba Ext. alone treated group did not. These results suggested that Ginkgo biloba Ext. sustained ACE inhibitory effect and reduced the inhibitory effect of bradykinin inactivation induced by enalapril, meanwhile, enalapril increased the antioxidant effect of Ginkgo biloba Ext.

  • PDF

Association Between Angiotensin II Receptor Blockers and the Risk of Lung Cancer Among Patients With Hypertension From the Korean National Health Insurance Service-National Health Screening Cohort

  • Moon, Sungji;Lee, Hae-Young;Jang, Jieun;Park, Sue K.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.53 no.6
    • /
    • pp.476-486
    • /
    • 2020
  • Objectives: The objective of this study was to estimate the risk of lung cancer in relation to angiotensin II receptor blocker (ARB) use among patients with hypertension from the Korean National Health Insurance Service-National Health Screening Cohort. Methods: We conducted a retrospective cohort study of patients with hypertension who started to take antihypertensive medications and had a treatment period of at least 6 months. We calculated the weighted hazard ratios (HRs) and their 95% confidence intervals (CIs) of lung cancer associated with ARB use compared with calcium channel blocker (CCB) use using inverse probability treatment weighting. Results: Among a total of 60 469 subjects with a median follow-up time of 7.8 years, 476 cases of lung cancer were identified. ARB use had a protective effect on lung cancer compared with CCB use (HR, 0.75; 95% CI, 0.59 to 0.96). Consistent findings were found in analyses considering patients who changed or discontinued their medication (HR, 0.50; 95% CI, 0.32 to 0.77), as well as for women (HR, 0.56; 95% CI, 0.34 to 0.93), patients without chronic obstructive pulmonary disease (HR, 0.75; 95% CI, 0.56 to 1.00), never-smokers (HR, 0.64; 95% CI, 0.42 to 0.99), and non-drinkers (HR, 0.69; 95% CI, 0.49 to 0.97). In analyses with different comparison antihypertensive medications, the overall protective effects of ARBs on lung cancer risk remained consistent. Conclusions: The results of the present study suggest that ARBs could decrease the risk of lung cancer. More evidence is needed to establish the causal effect of ARBs on the incidence of lung cancer.

Effects of Ethanol on Neurohumoral Mechanisms for Blood Pressure Regulation in Hemorrhaged Conscious Rats

  • Park, Yoon-Yub;Park, Jae-Sik;Lee, Won-Jung
    • The Korean Journal of Physiology
    • /
    • v.29 no.1
    • /
    • pp.91-102
    • /
    • 1995
  • The role of neurohumoral mechanisms in the regulation of cardiovascular functions and the effects of ethanol (EOH) on these mechanisms were examined in hemorrhaged conscious Wistar rats. The rats were bled at a constant rate (2 ml/kg/min) through the femoral artery until mean arterial pressure (MAP) was reduced by 30 mmHg. We studied the responses to hemorrhage 1) under normal conditions (Normal), and after pretreatments with 2) neural blockade (NB), pentolinium, 3) arginine vasopressin V1-receptor antagonist (AVPX) + NB, 4) angiotensin II ATI-receptor antagonist (AngIIX) + NB, 5) combined humoral blockade (HB), and 6) neurohumoral blockade. Intravenous administration of 30% EOH (6.3 ml/kg) attenuated the baroreceptor reflex sensitivity, and enhanced the depressor action of AngIIX. During hemorrhage, NB produced a faster fall ill MAP than Normal both in the saline and EOH groups. However, HB accelerated the rate of fall in MAP only in the EOH group. The recovery from hemorrhagic hypotension was not different between NB and Normal rats, but was attenuated in HB rats in the saline group. Under NB, AngIIX, but not AVPX, retarded the recovery rate compared with NB alone. EOH attenuated the recovery of MAP after hemorrhage in Normal rats, but completely abolished the recovery in HB rats. We conclude that 1) the maintenance of MAP during hemorrhage is mediated almost entirely by the autonomic functions, 2) angiotensin II plays an important role in the recovery from hemorrhagic hypotension, but AVP assumes little importance, 3) AVP release largely depends on the changes in blood volume, whereas renin release depends on the changes in blood pressure rather than blood volume, and 4) EOH increases the dependence of cardiovascular regulation on angiotensin II and impairs the recovery from hemorrhagic hypotension through the attenuation of autonomic functions.

  • PDF

The Effect of synthetic Antioxidants on the Proteolytic enymes 1. The Effect of synthetic Antioxidants on the Activity of the $\alpha$-Chymotrypsin and Trypsin (합성 항산화제가 단백질 분해효소에 미치는 영양 -제1보,$\alpha$ -Chymotrypsin 과 trypsin의 활성에 미치는 영양-)

  • 김상옥
    • Journal of the Korean Home Economics Association
    • /
    • v.19 no.2
    • /
    • pp.183-188
    • /
    • 1981
  • This study was conducted to investigate the effects of synthetic antioxidants con the degradation of angiotensin II which is made up of 8 amino acids: Asp-Arg-Val-Try-Ile-Gly-Pro-Phe, by the $\alpha$-chymotrypsin and trypsin. the results obtained were as follow; 1. Dibutyl hydroxytoluene, butyl hydroxyanisole and sodium L-ascorbate showed no inhibitory effect on the activity of $\alpha$-chymotrypsin on the angiotensin II, but ethyl protocathechuate inhibited. its activity at the concentration of 100ppm. However, the angiotension II was gradually degradated by $\alpha$-chymotrypsin after one hour incubation with ethylprotecathechuate. 2. Butyl hydroxyanisole inhibited trypsin activities above 100ppm, but no inhibitory activities was observed by the other antioxidants used in this experiment.

  • PDF

Regulatory Mechanisms of Angiotensin II on the $Na^+/H^+$ Antiport System in Rabbit Renal Proximal Tubule Cells. II. Inhibitory Effects of ANG II on $Na^+$ Uptake

  • Han, Ho-Jae;Park, Soo-Hyun;Koh, Hyun-Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.425-434
    • /
    • 1997
  • Many reports represent that angiotensin II (ANG II) caused a dose dependent biphasic effects on fluid transport in the proximal tubule. However, respective roles of different signaling pathways in mediating these effects remain unsettled. The aim of the present study was to examine signaling pathways at high doses of ANG II on the $Na^+$ uptake of primary cultured rabbit renal proximal tubule cells(PTCs) in hormonally defined serum-free medium. High concentrations of ANG II $(>10^{-9}\;M)$ inhibited $Na^+$ uptake and increased $[Ca^{2+}]_i\;level$ in the PTCs. However, low concentrations of $(<10^{-11}\;ANG\;II)$ stimulated $Na^+$ uptake and did not affect $[Ca^{2+}]_i\;level$. 8-(N, N-diethylamino)-octyl-3,3,5- trimethoxybenzoate (TMB-8), ethylene glycol-bis$({/beta}-amino\;ethyl ether)-N,N,N'$, N'-tetra acetic acid (EGTA), and nifedifine partially blocked the inhibitory effects of ANG II on $Na^+$ uptake. When ANG II and bradykinin (BK) were treated together, $Na^+$ uptake was further reduced $(88.47{\pm}1.98%\;of\;that\;of\;ANG\;II,\;81.85{\pm}1.84%\;of\;that\;of\;BK)$. In addition, W-7 and KN-62 blocked the ANG II-induced inhibition of $Na^+$ uptake. Arachidonic acid reduced $Na^+$ uptake in a dose-dependent manner. When ANG II and arachidonic acid were treated together, inhibitory effects on $Na^+$ uptake significantly exhibited greater reduction than that of each group, respectively. When PTCs were treated by mepacrine $(10^{-6}\;M)$ and AACOCF3 $(10^{-5}\;M)$ for 1 hr before the addition of $(<10^{-9}\;ANG\;II)$, the inhibitory effect of ANG II was reversed. In addition, econazole $(>10^{-6}\;M)$ blocked ANG II-induced inhibition of $Na^+$ uptake. In conclusion, the $[Ca^{2+}]_i$ (calcium-calmodulin-dependent kinase) and phospholipase $A_2\;(PLA_2)$ metabolites are involved in the inhibitory effects of ANG II on $Na^+$ uptake in the PTCs.

  • PDF

The Roles of Arachidonic Acid and Calcium in the Angiotensin II-induced Inhibition of $Na^+$ Uptake in Renal Proximal Tubule Cells

  • Park, Soo-Hyun;Koh, Hyun-Joo;Lee, Yeun-Hee;Son, Chang-Ho;Park, Min-Kyoung;Lee, Young-Jae;Han, Ho-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.1
    • /
    • pp.83-91
    • /
    • 1999
  • Angiotensin II (ANG II) has a biphasic effect on $Na^+$ transport in proximal tubule: low doses of ANG II increase the $Na^+$ transport, whereas high doses of ANG II inhibit it. However, the mechanisms of high dose ANG II-induced inhibition on $Na^+$ uptake are poorly understood. Thus the aim of the present study was to investigate signal transduction pathways involved in the ANG II-induced inhibition of $Na^+$ uptake in the primary cultured rabbit renal proximal tubule cells (PTCs) in hormonally defined serum-free medium. ANG II $(10^{-9}\;M)-induced$ inhibition of $Na^+$ uptake was blocked by losartan $(10^{-8}\;M,\;AT_1\;antagonist),$ but not by PD123319 $(10^{-8}\;M,\;AT_2\;antagonist)$ (P<0.05). ANG II-induced inhibition of $Na^+$ uptake was also completely abolished by neomycin $(10^{-4}\;M,$ PLC inhibitor), W-7 $(10^{-4}\;M,$ calmodulin antagonist), and $AACOCF_3\;(10^{-6}\;M,\;PLA_2\;inhibitor)$ (P<0.05). ANG II significantly increased $[^3H]arachidonic$ acid (AA) release compared to control. The ANG II-induced $[^3H]AA$ release was blocked by losartan, $AACOCF_3,$ neomycin, and W-7, but not by PD123319. ANG II-induced $[^3H]AA$ release in the presence of extracellular $Ca^{2+}$ was greater than in $Ca^{2+}-free$ medium, and it was partially blocked by TMB-8 $(10^{-4}\;M,$ intracelluar $Ca^{2+}$ mobilization blocker). However, in the absence of extracellular $Ca^{2+},$ it was completely blocked by TMB-8. In addition, econazole $(10^{-6}\;M,$ cytochrome P-450 monooxygenase inhibitor) and indomethacin $(10^{-6}\;M,$ cyclooxygenase inhibitor) blocked ANG II-induced inhibition of $Na^+$ uptake, but NGDA $(10^{-6}\;M,$ lipoxygenase inhibitor) did not affect it. In conclusion, $PLA_2-mediated$ AA release is involved in ANG II-induced inhibition of $Na^+$ uptake and is modulated by $[Ca^{2+}]_i$ in the PTCs.

  • PDF

Some Aberrations of the Renin-Angiotensin System in Spontaneously Hypertensive Rat (Spontaneously Hypertensive Rat에 있어서 Renin-Angiotensin계의 변조에 관하여)

  • Chung, Sung K.;Cho, Kyung W.
    • The Korean Journal of Physiology
    • /
    • v.19 no.2
    • /
    • pp.189-202
    • /
    • 1985
  • Enhanced activity of renin-angiotensin-aldosterone system has been suggested as a cause of the high blood pressure in certain forms of experimental hypertension. In spontaneously hypertensive rats, however, increased activity of the system has not been found, and even suppressed renin angiotensin system has been reported in the spontaneously hypertensive rat. In the present experiments it was attempted to explore the possible alteration of the short loop negative feedback control in the hypertensive rat. Experiments have been done in the anesthetized spontaneously hypertensive rats(SHR) as well as in normotensive Wistar and Sprague Dawley rats as control. Responses of the plasma renin activity to the intravenous L-isoproterenol were dose dependent, in both SHR and normotensive control rats. Hypotensive responses to smaller do sea of L-isoproterenol were more accentuated in SHR than in the normotensive control rats. Angiotensin If given intravenously suppressed plasma renin activity in a dose dependent fashion in both groups. However, these suppressive responses were significantly attenuated in SHR as compared with the normotensive control rats. Treatment with angiotensin I-converting enzyme inhibitor did not correct the attenuated responses of the plasma renin activity to angiotensin II in SHR. Intravenous infusion of arginine vasopressin also produced a dose-dependent suppression of plasma renin activity in both groups. The responses to arginine vasopressin were also significantly attenuated to the normotensive control rats. In the sodium-depleted SHR, arginine vasopressin did not suppress plasma renin activity, whereas the suppressive responses to arginine vasopressin in the normotensive control rats were not different from the untreated control rats. These data suggest that there may be a derangement in the short loop negative feedback control of the renin-angiotensin system in spontaneously hypertensive rat.

  • PDF

Epigallocatechin-3-gallate Regulates NADPH Oxidase Expression in Human Umbilical Vein Endothelial Cells

  • Ahn, Hee-Yul;Kim, Chan-Hyung;Ha, Tae-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.325-329
    • /
    • 2010
  • Vascular NADPH oxidase plays a pivotal role in producing superoxide in endothelial cells and thus acts in the initiation and development of inflammatory cardiovascular diseases such as atherosclerosis. Epigallocatechin-3-gallate (EGCG), the major catechin derived from green tea, has multiple beneficial effects for treating cardiovascular disease but the effect of EGCG on the expression of vascular NADPH oxidase remains unknown. In this study, we investigated the mechanism(s) by which EGCG might inhibit the expression of subunits of NADPH oxidase, namely $p47^{phox}$, $p67^{phox}$ and $p22^{phox}$, induced by angiotensin II (Ang II) in human umbilical vein endothelial cells. Ang II increased the expression levels of $p47^{phox}$, $p67^{phox}$, and $p22^{phox}$, but EGCG counteracted this effect on $p47^{phox}$. Moreover, EGCG did not affect the production of reactive oxygen species induced by Ang II. These data suggest a novel mechanism whereby EGCG might provide direct vascular benefits for treating inflammatory cardiovascular diseases.