• Title/Summary/Keyword: Anethetics

Search Result 2, Processing Time 0.024 seconds

Anesthesia for the Experimental Rats (실험용 쥐의 마취)

  • Choi, Hee-Rack;Ko, Jong-Hyun;Lee, Hae Beom;Lee, Jun-Mo
    • Archives of Reconstructive Microsurgery
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Rats and mice are commonly used in experimental laboratories and anesthetic drugs are important for researchers to understand the details. Administration of fluids helps to stabilize the experimental animals before anesthesia via intravenously through the lateral vein in rats and in case of difficulty in catheterization and maintenance, fluids are usually administered as boluses. Large volumes of cool fluids will rapidly lead to hypothermia and all parenteral fluids must be warmed to body temperature before administration. Premedication with a sedative may ease induction with volatile anesthetic drugs. The first choice for rodent anesthesia is complete inhalational anesthesia. The second option is using injectable anesthesia. Recovery from the volatile agents that have been used rapid when the agent is no longer administered. Anesthetic monitoring equipment is an infant-size bell sthethoscope that can be used to ausculate the heart and lungs. Supplemental heating should be provided to reduce the heat loss supply and maintain core body temperature. The kinds of drugs, characteristics, route of administration and care after surgery were reviewed and summarized from the references. Anesthetic drugs, maintenance, monitoring and aftercare are important in the laboratories to keep the animal safe in all experimental procedures.

  • PDF

Effects of Local Anesthetics on the Fluidity of Synaptosomal Plasma Membrane Vesicles Isolated from Bovine Brain (국소마취제가 Synaptosomal Plasma Membrane Vesicles의 유동성에 미치는 영향)

  • Yun, Il;Han, Suk-Kyu;Baik, Seung-Wan;Kim, Nam-Hong;Kang, Jung-Sook;Chung, Joong-Ki;Lee, Eun-Joo
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.43-52
    • /
    • 1988
  • To elucidate the mechanism of action of local anesthetics, the effects of local anethetics on the microenvironment of the lipid bilayers of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine brain and dimyristoylphosphatidylcholine (DMPC) multilamellar liposomes were investigated employing the intermolecular excimer fluorescence technique and differential scanning calorimetry (DSC). The relative intensities of excimer and monomer fluorescence of pyrene are a simple linear function of the viscosity of a homologous series of solvents. The microviscosity(${\eta}$)of the hydrocarbon region of SPMV was measured by this method and the value was $57.3{\pm}5.3\;cP$ at $37^{\circ}C$. In the presence of lidocaine-HCl and procaine-HCl, the values decreased to $46.5{\pm}5.1\;cP$ and $54.7{\pm}4.8\;cP$, respectvely. The differential scanning thermograms of DMPC multilamellar liposomes showed that local anesthetics significantly lowered the phase transition temperature, broadened the thermogram peaks, and reduced the size of the cooperative unit. These results indicate that local anesthetics have significant fluidizing effects on biomembranes and perturbation of membrane lipids may produce some, but not all, of their pharmacological actions.

  • PDF