• Title/Summary/Keyword: Anesthetics

Search Result 342, Processing Time 0.017 seconds

Development of simultaneous analytical method for investigation of ketamine and dexmedetomidine in feed (사료 내 케타민과 덱스메데토미딘의 잔류조사를 위한 동시분석법 개발)

  • Chae, Hyun-young;Park, Hyejin;Seo, Hyung-Ju;Jang, Su-nyeong;Lee, Seung Hwa;Jeong, Min-Hee;Cho, Hyunjeong;Hong, Seong-Hee;Na, Tae Woong
    • Analytical Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.136-142
    • /
    • 2022
  • According to media reports, the carcasses of euthanized abandoned dogs were processed at high temperature and pressure to make powder, and then used as feed materials (meat and bone meal), raising the possibility of residuals in the feed of the anesthetic ketamine and dexmedetomidine used for euthanasia. Therefore, a simultaneous analysis method using QuEChERS combined with high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry was developed for rapid residue analysis. The method developed in this study exhibited linearity of 0.999 and higher. Selectivity was evaluated by analyzing blank and spiked samples at the limit of quantification. The MRM chromatograms of blank samples were compared with those of spiked samples with the analyte, and there were no interferences at the respective retention times of ketamine and dexmedetomidine. The detection and quantitation limits of the instrument were 0.6 ㎍/L and 2 ㎍/L, respectively. The limit of quantitation for the method was 10 ㎍/kg. The results of the recovery test on meat and bone meal, meat meal, and pet food showed ketamine in the range of 80.48-98.63 % with less than 5.00 % RSD, and dexmedetomidine in the range of 72.75-93.00 % with less than 4.83 % RSD. As a result of collecting and analyzing six feeds, such as meat and bone meal, prepared at the time the raw material was distributed, 10.8 ㎍/kg of ketamine was detected in one sample of meat and bone meal, while dexmedetomidine was found to have a concentration below the limit of quantitation. It was confirmed that the detected sample was distributed before the safety issue was known, and thereafter, all the meat and bone meal made with the carcasses of euthanized abandoned dogs was recalled and completely discarded. To ensure the safety of the meat and bone meal, 32 samples of the meat and bone meal as well as compound feed were collected, and additional residue investigations were conducted for ketamine and dexmedetomidine. As a result of the analysis, no component was detected. However, through this investigation, it was confirmed that some animal drugs, such as anesthetics, can remain without decomposition even at high temperature and pressure; therefore, there is a need for further investigation of other potentially hazardous substances not controlled in the feed.

The Effect of Lidocaine Dose and Pretreated Diazepam on Cardiovascular System and Plasma Concentration of Lidocaine in Dogs Ansthetized with Halothane-Nitrous Oxide (Diazepam 전투여와 Lidocaine 투여용량이 혈중농도 및 심혈역학적 변화에 미치는 영향)

  • Lee, Kyeong-Sook;Kim, Sae-Yeon;Park, Dae-Pal;Kim, Jin-Mo;Chung, Chung-Gil
    • Journal of Yeungnam Medical Science
    • /
    • v.10 no.2
    • /
    • pp.451-474
    • /
    • 1993
  • Lidocaline if frequently administered as a component of an anesthetic : for local or regional nerve blocks, to mitigate the autonomic response to laryngoscopy and tracheal intubation, to suppress the cough reflex, and for antiarrythmic therapy. Diazepam dectease the potential central nervous system (CNS) toxicity of local anesthetic agents but may modify the sitmulant action of lidocaine in addition to their own cardiovascular depressant. The potential cardiovascular toxicity of local anesthetics may be enhanced by the concomitant administration of diazepam. This study was designed to investigate the effects of lidocaine dose and pretreated diazepam to cardiovascular system and plasma concentration of lidocaine. Lidocaine in 100 mcg/kg/min, 200 mcg/kg/min, and 300 mcg/kg/min was given by sequential infusion to dogs anesthetized with halothane-nitrous oxide (Group I). And in group II, after diazepam pretreatment, lidocaine was infused by same way when lidocaine was administered in 100 mcg/kg/min, the low plasma levels ($3.97{\pm}0.22-4.48{\pm}0.36$ mcg/ml) caused a little reduction in cardiovascular hemodynamics. As administered in 200 mcg/kg/min, 300 mcg/kg/min, the higher plasma levels ($7.50{\pm}0.66-11.83{\pm}0.59$ mcg/ml) reduced mean arterial pressure (MAP), cardiac index (CI), stroke index (SI), left ventricular stroke work index (LVSWI), and right ventricular stroke work index (PVSWI) and increased pulmonary artery wedge pressure (PAWP), central venous pressure (CVP), systemic vascular resistance index (SVRI), but was associated with little changes of heart rate (HR), mean pulmonary artery pressure (MPAP), and pulmonary vascular resistance index (PVRI). When lidocaine with pretreated diazepam was administered in 100 mcg/kg/min, the low plasma level, the lower level than when only lidocaine administered, reduced MAP, but was not changed other cardiovascular hemodynamics. While lidocaine was infused in 200 mcg/kg/min, 300 mcg/kg/min in dogs pretreated diazepam, the higher plasma level ($7.64{\pm}0.79-13.79{\pm}0.82$ mcg/ml) was maintained and was associated with reduced CI, SI, LVSWI and incresed PAWP, CVP, SVRI but was a little changes of HR, MPAP, PVRI. After $CaCl_2$ administeration, CI, SI, SVRI, LVSWI was recovered but PAWP, CVP was rather increased than recovered. The foregoing results demonstrate that pretreated diazepam imposes no additional burden on cardiovascular system when a infusion of large dose of lidocaine is given to dogs anesthetized with halothanenitrous oxide. But caution may be advised if the addition of lidocaine is indicated in subjects who have impared autonomic nervous system and who are in hypercarbic, hypoxic, or acidotic states.

  • PDF