• Title/Summary/Keyword: Androgen receptor (AR)

Search Result 57, Processing Time 0.021 seconds

Identification of Ran-binding protein M as a stanniocalcin 2 interacting protein and implications for androgen receptor activity

  • Shin, Jihye;Sohn, Young Chang
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.643-648
    • /
    • 2014
  • Stanniocalcin (STC), a glycoprotein hormone originally discovered in fish, has been implicated in calcium and phosphate homeostasis. While fishes and mammals possess two STC homologs (STC1 and STC2), the physiological roles of STC2 are largely unknown compared with those of STC1. In this study, we identified Ran-binding protein M (RanBPM) as a novel binding partner of STC2 using yeast two-hybrid screening. The interaction between STC2 and RanBPM was confirmed in mammalian cells by immunoprecipitation. STC2 enhanced the RanBPM-mediated transactivation of liganded androgen receptor (AR), but not thyroid receptor ${\beta}$, glucocorticoid receptor, or estrogen receptor ${\beta}$. We also found that AR interacted with RanBPM in both the absence and presence of testosterone (T). Furthermore, we discovered that STC2 recruits RanBPM/AR complex in T-dependent manner. Taken together, our findings suggest that STC2 is a novel RanBPM-interacting protein that promotes AR transactivation.

Tissue- and maturity-dependent expression pattern of androgen receptor mRNA in goldfish, Carassius auratus

  • Choi, Cheol-Young;Kim, Soon-Hag;Kim, Bong-Seok
    • Journal of fish pathology
    • /
    • v.16 no.2
    • /
    • pp.111-118
    • /
    • 2003
  • Androgen plays an important role in the regulation of gonadotropin production in vertebrates . We have investigated the transcriptional pattern of androgen receptor (AR) in a variety of tissues in maturing male and female goldfish by RT-PCR. Specific primer for AR was designed based on goldfish AR gene from the GenBank (accession number AY090897). AR was shown 10 be maturity- and tissue-dependent gene expression pattern in goldfish. In immature male goldfish, significantly higher transcript level of AR was observed in the pituitary und testis , compared [0 brain and liver. Mature male goldfish showed a similar expression pattern to immature male goldfish. Interestingly. when compare to male goldfish, female goldfish showed AR mRNA expression that was found 10 be weak in pituitary, and very low expression in brain. They could not be found 10 have expression in any other tissues. Taken together. the- transcriptional analysis of AR depending on the tissue, sex. and maturity of a goldfish provides the opportunity for the study of goldfish reproductive physiology ,The results provided for the first time a comparison of the tissue distribution of AR mRNA in sexually maturating male and female goldfish.

Insulin-Like Growth Factor-I-Induced Androgen Receptor Activation Is Mediated by the PI3K/Akt Pathway in C2C12 Skeletal Muscle Cells

  • Lee, Won Jun
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.495-499
    • /
    • 2009
  • Although insulin-like growth factor-I (IGF-I) and androgen receptor (AR) are well known effectors of skeletal muscle, the molecular mechanism by which signaling pathways integrating AR and IGF-I in skeletal muscle cells has not been previously examined. In this study, the role of PI3K/Akt on IGF-I-induced gene expression and activation of AR in skeletal muscle cells was investigated. C2C12 cells were treated with IGF-I in the absence or presence of inhibitors of PI3K/Akt pathway (LY294002 and Wortmannin). Inhibition of the PI3K/Akt pathway with LY294002 or Wortmannin led to a significant decrease in IGF-I-induced AR phosphorylation and total AR protein expression. Furthermore, IGF-I-induced AR mRNA and skeletal ${\alpha}-actin$ mRNA were blocked by LY294002 or Wortmannin. Confocal images showed that IGF-I-induced AR translocation from cytosol to nucleus was inhibited significantly in response to treatment with LY294002 or Wortmannin. The present results suggest that modulating effect of IGF-I on AR gene expression and activation in C2C12 mouse skeletal muscle cells is mediated at least in part by the PI3K/Akt pathway.

Association of the X-linked Androgen Receptor Leu57Gln Polymorphism with Monomelic Amyotrophy

  • Park, Young-Mi;Lim, Young-Min;Kim, Dae-Seong;Lee, Jong-Keuk;Kim, Kwang-Kuk
    • Genomics & Informatics
    • /
    • v.9 no.2
    • /
    • pp.64-68
    • /
    • 2011
  • Monomelic amyotrophy (MA), also known as Hirayama disease, occurs mainly in young men and manifests as weakness and wasting of the muscles of the distal upper limbs. Here, we sought to identify a genetic basis for MA. Given the predominance of MA in males, we focused on candidate neurological disease genes located on the X chromosome, selecting two X-linked candidate genes, androgen receptor (AR ) and ubiquitin-like modifier activating enzyme 1 (UBA1). Screening for genetic variants using patients' genomic DNA revealed three known genetic variants in the coding region of the AR gene: one nonsynonymous single-nucleotide polymorphism (SNP; rs78686797) encoding Leu57Gln, and two variants of polymorphic trinucleotide repeat segments that encode polyglutamine (CAG repeat; rs5902610) and polyglycine (GGC repeat; rs3138869) tracts. Notably, the Leu57Gln polymorphism was found in two patients with MA from 24 MA patients, whereas no variants were found in 142 healthy male controls. However, the numbers of CAG and GGC repeats in the AR gene were within the normal range. These data suggest that the Leu57Gln polymorphism encoded by the X-linked AR gene may contribute to the development of MA.

Menin Enhances Androgen Receptor-Independent Proliferation and Migration of Prostate Cancer Cells

  • Kim, Taewan;Jeong, Kwanyoung;Kim, Eunji;Yoon, Kwanghyun;Choi, Jinmi;Park, Jae Hyeon;Kim, Jae-Hwan;Kim, Hyung Sik;Youn, Hong-Duk;Cho, Eun-Jung
    • Molecules and Cells
    • /
    • v.45 no.4
    • /
    • pp.202-215
    • /
    • 2022
  • The androgen receptor (AR) is an important therapeutic target for treating prostate cancer (PCa). Moreover, there is an increasing need for understanding the AR-independent progression of tumor cells such as neuroendocrine prostate cancer (NEPC). Menin, which is encoded by multiple endocrine neoplasia type 1 (MEN1), serves as a direct link between AR and the mixed-lineage leukemia (MLL) complex in PCa development by activating AR target genes through histone H3 lysine 4 methylation. Although menin is a critical component of AR signaling, its tumorigenic role in AR-independent PCa cells remains unknown. Here, we compared the role of menin in AR-positive and AR-negative PCa cells via RNAi-mediated or pharmacological inhibition of menin. We demonstrated that menin was involved in tumor cell growth and metastasis in PCa cells with low or deficient levels of AR. The inhibition of menin significantly diminished the growth of PCa cells and induced apoptosis, regardless of the presence of AR. Additionally, transcriptome analysis showed that the expression of many metastasis-associated genes was perturbed by menin inhibition in AR-negative DU145 cells. Furthermore, wound-healing assay results showed that menin promoted cell migration in AR-independent cellular contexts. Overall, these findings suggest a critical function of menin in tumorigenesis and provide a rationale for drug development against menin toward targeting high-risk metastatic PCa, especially those independent of AR.

Ligand-Independent Activation of the Androgen Receptor by Insulin-Like Growth Factor-I and the Role of the MAPK Pathway in Skeletal Muscle Cells

  • Kim, Hye Jin;Lee, Won Jun
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.589-593
    • /
    • 2009
  • In this study, the roles of the p38 MAPK, ERK1/2 and JNK signaling pathway in IGF-I-induced AR induction and activation were examined. C2C12 cells were treated with IGF-I in the absence or presence of various inhibitors of p38 MAPK (SB203580), ERK1/2 (PD98059), and JNK (SP600125). Inhibition of the MAPK pathway with SB203580, PD98059, or SP600125 significantly decreased IGF-I-induced AR phosphorylation and total AR protein expression. IGF-I-induced nuclear fraction of total AR and phosphorylated AR were significantly inhibited by SB203580, PD98059, or SP600125. Furthermore, IGF-I-induced AR mRNA and skeletal ${\alpha}-actin$ mRNA were blocked by those inhibitors in dose-dependent manner. Confocal images showed that IGF-I-induced AR nuclear translocation from cytosol was significantly blocked by SB203580, PD98059, or SP600125, suggesting that the MAPK pathway regulates IGF-I-induced AR nuclear localization in skeletal muscle cells. The present results suggest that the MAPK pathways are required for the ligand-independent activation of AR by IGF-I in C2C12 skeletal muscle cells.

Two Korean girls with complete androgen insensitivity syndrome diagnosed in infancy

  • Heo, You Jung;Ko, Jung Min;Lee, Young Ah;Shin, Choong Ho;Yang, Sei Won;Kim, Man Jin;Park, Sung Sub
    • Annals of Pediatric Endocrinology and Metabolism
    • /
    • v.23 no.4
    • /
    • pp.220-225
    • /
    • 2018
  • Androgen insensitivity syndrome (AIS) is a rare genetic disease caused by various abnormalities in the androgen receptor (AR). The AR is an essential steroid hormone receptor that plays a critical role in male sexual differentiation and development and preservation of the male phenotype. Mutations in the AR gene on the X chromosome cause malfunction of the AR so that a 46,XY karyotype male has some physical characteristics of a woman or a full female phenotype. Depending on the phenotype, AIS can be classified as complete, partial or mild. Here, we report 2 cases of complete AIS in young children who showed complete sex reversal from male to female as a result of AR mutations. They had palpable inguinal masses and normal female external genitalia, a blind-end vagina and absent $M{\ddot{u}}llerian$ duct derivatives. They were both 46,XY karyotype and AR gene analysis demonstrated pathologic mutations in both. Because AIS is inherited in an X-linked recessive manner, we performed genetic analysis of the female family members of each patient and found the same mutation in the mothers of both patients and in the female sibling of case 2. Gonadectomy was performed in both patients to avoid the risk of malignancy in the undescended testicles, and estrogen replacement therapy is planned for their adolescence. Individuals with complete AIS are usually raised as females and need appropriate care.

Androgen Receptor-dependent Expression of Low-density Lipoprotein Receptor-related Protein 6 is Necessary for Prostate Cancer Cell Proliferation

  • Park, Eun;Kim, Eun Kyoung;Kim, Minkyoung;Ha, Jung Min;Kim, Young Whan;Jin, Seo Yeon;Shin, Hwa Kyoung;Ha, Hong Koo;Lee, Jeong Zoo;Bae, Sun Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.235-240
    • /
    • 2015
  • Androgen receptor (AR) signaling is important for prostate cancer (PCa) cell proliferation. Here, we showed that proliferation of hormone-sensitive prostate cancer cells such as LNCaP was significantly enhanced by testosterone stimulation whereas hormone-insensitive prostate cancer cells such as PC3 and VCaP did not respond to testosterone stimulation. Blocking of AR using bicalutamide abolished testosterone-induced proliferation of LNCaP cells. In addition, knockdown of AR blocked testosterone-induced proliferation of LNCaP cells. Basal expression of low-density lipoprotein receptor-related protein 6 (LRP6) was elevated in VCaP cells whereas stimulation of testosterone did not affect the expression of LRP6. However, expression of LRP6 in LNCaP cells was increased by testosterone stimulation. In addition, knockdown of LRP6 abrogated testosterone-induced proliferation of LNCaP cells. Given these results, we suggest that androgen-dependent expression of LRP6 plays a crucial role in hormone-sensitive prostate cancer cell proliferation.

The Inhibitory Effect on Androgen Receptor-Dependent Prostate Cancer Cell Growth by Anti-Histone Acetyltransferase Activity from Terminalia chebula Retz. Fruit Methanol Extract (가자(Terminalia chebula Retz.) 열매 메탄올 추출물의 Histone Acetyltransferase 활성 저해에 따른 항전립선암 효과)

  • Lee, Yoo-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.10
    • /
    • pp.1539-1543
    • /
    • 2013
  • The inhibitory effect of histone acetyltransferase from methanol extract of Terminalia chebula Retz. fruit (TCME) was investigated in prostate cancer cell. TCME significantly inhibited histone acetyltransferase (HAT) activity by over 50% at 100 ${\mu}g/mL$ concentration. TCME treatment repressed androgen receptor (AR) mediated transcription, mRNA level of AR target genes, prostate specific antigen (PSA) and NKX-3.1, as well as AR acetylation. Finally, the prostate cancer cell viability was dramatically reduced by TCME treatment at 0~100 ${\mu}g/mL$ concentration. These results indicated that TCME, as a potent HAT inhibitor, could suppress prostate cancer cell growth by AR mediated transcription regulation.

MLL5, a histone modifying enzyme, regulates androgen receptor activity in prostate cancer cells by recruiting co-regulators, HCF1 and SET1

  • Lee, Kyoung-Hwa;Kim, Byung-Chan;Jeong, Chang Wook;Ku, Ja Hyeon;Kim, Hyeon Hoe;Kwak, Cheol
    • BMB Reports
    • /
    • v.53 no.12
    • /
    • pp.634-639
    • /
    • 2020
  • In prostate cancer, the androgen receptor (AR) transcription factor is a major regulator of cell proliferation and metastasis. To identify new AR regulators, we focused on Mixed lineage leukemia 5 (MLL5), a histone-regulating enzyme, because significantly higher MLL5 expression was detected in prostate cancer tissues than in matching normal tissues. When we expressed shRNAs targeting MLL5 gene in prostate cancer cell line, the growth rate and AR activity were reduced compared to those in control cells, and migration ability of the knockdown cells was reduced significantly. To determine the molecular mechanisms of MLL5 on AR activity, we proved that AR physically interacted with MLL5 and other co-factors, including SET-1 and HCF-1, using an immunoprecipitation method. The chromatin immunoprecipitation analysis showed reduced binding of MLL5, co-factors, and AR enzymes to AR target gene promoters in MLL5 shRNA-expressing cells. Histone H3K4 methylation on the AR target gene promoters was reduced, and H3K9 methylation at the same site was increased in MLL5 knockdown cells. Finally, xenograft tumor formation revealed that reduction of MLL5 in prostate cancer cells retarded tumor growth. Our results thus demonstrate the important role of MLL5 as a new epigenetic regulator of AR in prostate cancer.