• Title/Summary/Keyword: Anchor Model

Search Result 289, Processing Time 0.025 seconds

Tensile Design Criteria Evaluation of Cast-In-Place Anchor by Numerical Analysis (수치해석에 의한 직매형 앵커기초의 인장 설계기준 평가)

  • 장정범;서용표;이종림
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.209-216
    • /
    • 2004
  • Numerical analysis is carried out to identify the appropriateness of the design codes that is available for the tensile design of fastening system at Nuclear Power Plant (NPP) in this study. This study is intended for the cast-in-place anchor that is widely used for the fastening of equipment in Korean NPPs. The microplane model and the elastic-perfectly plastic model are employed for the quasi-brittle material like concrete and for the ductile material like anchor bolt as constitutive model for numerical analysis and smeared crack model is employed for the crack and damage phenomena. The developed numerical model is verified on a basis of the various test data of cast-in-place anchor. The appropriateness of both ACI 349 Code and CCD approach of CEB-FIP Code is evaluated for the tensile design of cast-in-place anchor and it is proved that both design codes give a conservative results compared with real tensile capacity of cast-in-place anchor.

  • PDF

Uplift response of circular plates as symmetrical anchor plates in loose sand

  • Niroumand, Hamed;Kassim, Khairul Anuar
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.321-340
    • /
    • 2014
  • Uplift response of symmetrical circular anchor plates has been evaluated in physical model tests and numerical simulation using Plaxis. The behavior of circular anchor plates during uplift test was studied by experimental data and finite element analyses in loose sand. Validation of the analysis model was also carried out with 50 mm, 75 mm and 100 mm diameter of circular plates in loose sand. Agreement between the uplift responses from the physical model tests and finite element modeling using PLAXIS 2D, based on 100 mm computed maximum displacements was excellent for circular anchor plates. Numerical analysis using circular anchor plates was conducted based on hardening soil model (HSM). The research has showed that the finite element results gives higher than the experimental findings in the loose sand.

Square plates as symmetrical anchor plates under uplift test in loose sand

  • Niroumand, Hamed;Kassim, Khairul Anuar
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.593-612
    • /
    • 2014
  • The uplift response of symmetrical square anchor plates has been evaluated in physical model tests and numerical simulations using Plaxis. The behavior of square anchor plates during uplift test was studied by experimental data and finite element analyses in loose sand. Validation of the analysis model was also carried out with 50 mm, 75 mm and 100 mm Length square plates in loose sand. Agreement between the uplift responses from the physical model tests and finite element modeling using PLAXIS 2D, based on 100 mm computed maximum displacements was excellent for square anchor plates. Numerical analysis using square anchor plates was conducted based on the hardening soil model (HSM). The research has shown that the finite element results are higher than the experimental findings in loose sand.

Nonlinear Analysis of Cyclically Loaded Concrete-Steel Structures Using an Anchor Bond-Slip Model (앵커 부착-미끄러짐 모형을 이용한 콘크리트-강재 구조물의 비선형 반복하중 해석)

  • Lim, Ju Eun;Lee, Jee Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.495-501
    • /
    • 2009
  • In this paper, a numerical anchor bond-slip model is proposed to improve the numerical simulation of concrete-steel structures connected with steel anchor bolts and subjected to extreme cyclic loading. The suggested bond-slip model is composed of a group of nonlinear uniaxial connector elements and its parameters can be determined by calibrating the model with pull-out test data. Numerical analysis results from simulating a concrete foundation-steel column structure using the proposed bond-slip anchor model, which is implemented based on Abaqus elements, and the perfect-bond anchor model are compared with the experimental results. It is concluded that a reasonable anchor bond-slip model is required to realistically simulate concrete-steel structures subjected to extreme cyclic loading, and the proposed anchor bond-slip model shows acceptable performance in the present numerical analysis.

Characteristics of Pullout Behavior of Soil Improvement(SI) Anchor (지반개량(SI)앵커의 인발거동특성)

  • 임종철;홍석우;송무효;강낙안
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.139-151
    • /
    • 1998
  • SI anchor means the soil improvement anchor. The ground for supporting anchor is improved by JSP, and as a result, SI anchor body has about 80cm in diameter. SI anchor shows high pullout resistance by the frictional force between anchor body and ground, and the bearing capacity of anchor body. Especially the frictional force increases very much with increasing diameter of anchor body improved by JBP. In this study, model and field tests are made to analyse the mechanism of pullout resistance of SI anchor. Through model tests for the SI anchor in air dried sandy ground, strain fields of ground around SI anchor surface are analysed by a photo analysis method using the latex membrane on the wall of soil tank. The results of field tests are analysed by the strains measured by 10 strain gages attached on the inner wall of specially designed PVC pipe embedded in anchor body, and the strains of anchor body are also measured in the model tests.

  • PDF

Characteristic study of bell-shaped anchor installed within cohesive soil

  • Das, Arya;Bera, Ashis Kumar
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.497-509
    • /
    • 2021
  • A large deformation FEM (Finite Element Method) based numerical analysis has been performed to study the behaviour of the bell-shaped anchor embedded in undrained saturated (cohesive) soil with the help of finite element based software ABAQUS. A typical model anchor with bell-diameter of 0.125 m, embedded in undrained saturated soil with varying cohesive strength (from 5 kN/m2 to 200 kN/m2) has been chosen for studying the characteristic behaviour of the bell-shaped anchor installed in cohesive soil. Breakout factors have been evaluated for each case and verified with the results of experimental model tests for three different types of soil samples. The maximum value of breakout factor was found as about 8.5 within a range of critical embedment ratio of 2.5 to 3. An explicit model has been developed to estimate the breakout factor (Fc) for uplift capacity of bell-shaped anchor within clay mass in terms of H/D ratio (embedment ratio). It was also found that, the ultimate uplift capacity of the anchor increases with the increase of the value of cohesive strength of the soil and H/D ratio. The empirical equation developed in the present investigation is usable within the range of cohesion value and H/D ratio from 5 kN/m2 to 200 kN /m2 and 0.5 to 3.0 respectively. The proposed model has been validated against data obtained from a series of model tests carried out in the present investigation. From the stress-profile analysis of the soil mass surrounding the anchor, occurrence of stress concentration is found to be generated at the joint of anchor shaft and bell. It was also found that the vertical and horizontal stresses surrounding the anchor diminish at about a distance of 0.3 m and 0.15 m respectively.

Modeling and optimization of infill material properties of post-installed steel anchor bolt embedded in concrete subjected to impact loading

  • Saleem, Muhammad
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.445-455
    • /
    • 2022
  • Steel anchor bolts are installed in concrete using a variety of methods. One of the most common methods of anchor bolt installation is using epoxy resin as an infill material injected into the drilled hole to act as a bonding material between the steel bolt and the surrounding concrete. Typical design standards assume uniform stress distribution along the length of the anchor bolt accompanied with single crack leading to pull-out failure. Experimental evidence has shown that the steel anchor bolts fail owing to the multiple failure patterns, hence these design assumptions are not realistic. In this regard, the presented research work details the analytical model that takes into consideration multiple micro cracks in the infill material induced via impact loading. The impact loading from the Schmidt hammer is used to evaluate the bond condition bond condition of anchor bolt and the epoxy material. The added advantage of the presented analytical model is that it is able to take into account the various type of end conditions of the anchor bolts such as bent or U-shaped anchors. Through sensitivity analysis the optimum stiffness and shear strength properties of the epoxy infill material is achieved, which have shown to achieve lower displacement coupled with reduced damage to the surrounding concrete. The accuracy of the presented model is confirmed by comparing the simulated deformational responses with the experimental evidence. From the comparison it was found that the model was successful in simulating the experimental results. The proposed model can be adopted by professionals interested in predicting and controlling the deformational response of anchor bolts.

Experimental and numerical investigation of uplift behavior of umbrella-shaped ground anchor

  • Zhu, Hong-Hu;Mei, Guo-Xiong;Xu, Min;Liu, Yi;Yin, Jian-Hua
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.165-181
    • /
    • 2014
  • In the past decade, different types of underreamed ground anchors have been developed for substructures requiring uplift resistance. This article introduces a new type of umbrella-shaped anchor. The uplift behavior of this ground anchor in clay is studied through a series of laboratory and field uplift tests. The test results show that the umbrella-shaped anchor has higher uplift capacity than conventional anchors. The failure mode of the umbrella-shaped anchor in a large embedment depth can be characterized by an arc failure surface and the dimension of the plastic zone depends on the anchor diameter. The anchor diameter and embedment depth have significant influence on the uplift behavior. A finite element model is established to simulate the pullout of the ground anchor. A parametric study using this model is conducted to study the effects of the elastic modulus, cohesion, and friction angle of soils on the load-displacement relationship of the ground anchor. It is found that the larger the elastic modulus and the shear strength parameters, the higher the uplift capacity of the ground anchor. It is suggested that in engineering design, the soil with stiffer modulus and higher shear strength should be selected as the bearing stratum of this type of anchor.

Model Test for the Development of Installing Manipulator of Concrete Pile Anchor (콘크리트 파일앵커의 설치 매니퓨레이터의 개발을 위한 모형실험에 관한 연구)

  • 윤길수;김호상
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.47-52
    • /
    • 2004
  • Greater holding force of an anchor is required for maintaining the position of a larger floating structure. According to the series of model tests of pile anchors with movable fluke, the square type pile anchor, with fluke, showed more than 6 times of the uplift pulling force, compared to the same type pile anchor, without fluke. This uplift force is 100 times its weight. When the water depth is more than 40m, It is difficult to install the pile anchor. For a convenient installation method, a type of manipulator is proposed for the separation of a weight and buoyancy controller, using TRIZ.

Holding Mechanism of Anchor System for Fisheries Facilities (계류기초의 파주력 산정에 관한 연구)

  • Jung, Jin-Ho;Ryu, Cheong-Ro;Kim, Jong-Gyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.2
    • /
    • pp.132-147
    • /
    • 1996
  • The optimal design of floating type fisheries facilities in the open sea is demanded considering with the severe hydrodynamic forces on floating body, mooring tension and holding force of anchor. For conserving the facilities in most effective state, design and selection of anchor system is one of the most important fundamental subject. To enhance the design procedure of anchor system the holding forces of anchor are investigated by the hydraulic model test and are compared with the typical conventional results for various anchors. Applicability of previous estimation methods of holding force are checked and holding mechanism of anchor is discussed. Using the results a new computational concept of holding force is suggested considering mainly the effects of passive soil pressure (resistance), steady soil pressure, and surface friction etc. The new estimation method is proved as a feasible one by comparing the results of hydraulic model experiments. Applicability of various anchors to the anchor system on open sea fisheries structures is comprehensively reviewed using the present model tests and previous study results in the viewpoint of economy, construction and stability etc. Using the results, fundamental anchoring system design procedures are suggested to apply huge marine ranching complex with increase of the holding capacity of anchor under the optimum cost.

  • PDF