• Title/Summary/Keyword: Anastigmat

Search Result 12, Processing Time 0.017 seconds

Straylight analysis for preliminary filter and baffle design for New Generation GOCI

  • Oh, Eun-Song;Ahn, Ki-Beom;Jung, Kil-Jae;Ryu, Dong-Ok;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.25.4-26
    • /
    • 2010
  • We present a three-mirror anastigmat(TMA) optical system for New Generation GOCI. In order to reduce the ghost optimized filter and baffle. By using carefully chosen antireflective coating and tilted filter angle, we fulfilled the design SNR requirement of 1500. We then designed a new entrance baffle and an internal baffle capable of producing the ghost ratio better than 0.01% of the nominal signal. The entrance baffle limits FOV to $0.75^{\circ}$ (E/W) $\times$ $0.60^{\circ}$ (S/N), and prevents the system from strong sun illumination, and the internal baffle prevents stray and scattered ray from entering into the telescope cavity. From these filter and baffle design, we confirmed that the instrument signal to noise ratio can be met with the current conceptual opto-mechanical design.

  • PDF

Development of Geostationary Ocean Color Imager (GOCI) (정지궤도 해색탑재체(GOCI)의 개발)

  • Cho, Seong-Ick;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Kang, Gm-Sil;Youn, Heong-Sik
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.157-165
    • /
    • 2010
  • In June 2010, Geostationary Ocean Color Imager (GOCI), the world's first ocean color observation satellite will be launched. GOCI is planned for use in real-time monitoring of the ocean environment around Korean Peninsula by daily analysis of ocean environment measurements of chlorophyll concentration, dissolved organic matter, and suspended sediments taken eight times per day for seven years. GOCI primary data will support a fishery information service and red tide forecasting, and ocean climate change research. In this paper, the development background of GOCI, user requirements, GOCI architecture, and the GOCI on-orbit operational concept are explained.