• Title/Summary/Keyword: Analyzes

Search Result 9,552, Processing Time 0.041 seconds

The Ontology Based, the Movie Contents Recommendation Scheme, Using Relations of Movie Metadata (온톨로지 기반 영화 메타데이터간 연관성을 활용한 영화 추천 기법)

  • Kim, Jaeyoung;Lee, Seok-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.25-44
    • /
    • 2013
  • Accessing movie contents has become easier and increased with the advent of smart TV, IPTV and web services that are able to be used to search and watch movies. In this situation, there are increasing search for preference movie contents of users. However, since the amount of provided movie contents is too large, the user needs more effort and time for searching the movie contents. Hence, there are a lot of researches for recommendations of personalized item through analysis and clustering of the user preferences and user profiles. In this study, we propose recommendation system which uses ontology based knowledge base. Our ontology can represent not only relations between metadata of movies but also relations between metadata and profile of user. The relation of each metadata can show similarity between movies. In order to build, the knowledge base our ontology model is considered two aspects which are the movie metadata model and the user model. On the part of build the movie metadata model based on ontology, we decide main metadata that are genre, actor/actress, keywords and synopsis. Those affect that users choose the interested movie. And there are demographic information of user and relation between user and movie metadata in user model. In our model, movie ontology model consists of seven concepts (Movie, Genre, Keywords, Synopsis Keywords, Character, and Person), eight attributes (title, rating, limit, description, character name, character description, person job, person name) and ten relations between concepts. For our knowledge base, we input individual data of 14,374 movies for each concept in contents ontology model. This movie metadata knowledge base is used to search the movie that is related to interesting metadata of user. And it can search the similar movie through relations between concepts. We also propose the architecture for movie recommendation. The proposed architecture consists of four components. The first component search candidate movies based the demographic information of the user. In this component, we decide the group of users according to demographic information to recommend the movie for each group and define the rule to decide the group of users. We generate the query that be used to search the candidate movie for recommendation in this component. The second component search candidate movies based user preference. When users choose the movie, users consider metadata such as genre, actor/actress, synopsis, keywords. Users input their preference and then in this component, system search the movie based on users preferences. The proposed system can search the similar movie through relation between concepts, unlike existing movie recommendation systems. Each metadata of recommended candidate movies have weight that will be used for deciding recommendation order. The third component the merges results of first component and second component. In this step, we calculate the weight of movies using the weight value of metadata for each movie. Then we sort movies order by the weight value. The fourth component analyzes result of third component, and then it decides level of the contribution of metadata. And we apply contribution weight to metadata. Finally, we use the result of this step as recommendation for users. We test the usability of the proposed scheme by using web application. We implement that web application for experimental process by using JSP, Java Script and prot$\acute{e}$g$\acute{e}$ API. In our experiment, we collect results of 20 men and woman, ranging in age from 20 to 29. And we use 7,418 movies with rating that is not fewer than 7.0. In order to experiment, we provide Top-5, Top-10 and Top-20 recommended movies to user, and then users choose interested movies. The result of experiment is that average number of to choose interested movie are 2.1 in Top-5, 3.35 in Top-10, 6.35 in Top-20. It is better than results that are yielded by for each metadata.

Research Trend Analysis Using Bibliographic Information and Citations of Cloud Computing Articles: Application of Social Network Analysis (클라우드 컴퓨팅 관련 논문의 서지정보 및 인용정보를 활용한 연구 동향 분석: 사회 네트워크 분석의 활용)

  • Kim, Dongsung;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.195-211
    • /
    • 2014
  • Cloud computing services provide IT resources as services on demand. This is considered a key concept, which will lead a shift from an ownership-based paradigm to a new pay-for-use paradigm, which can reduce the fixed cost for IT resources, and improve flexibility and scalability. As IT services, cloud services have evolved from early similar computing concepts such as network computing, utility computing, server-based computing, and grid computing. So research into cloud computing is highly related to and combined with various relevant computing research areas. To seek promising research issues and topics in cloud computing, it is necessary to understand the research trends in cloud computing more comprehensively. In this study, we collect bibliographic information and citation information for cloud computing related research papers published in major international journals from 1994 to 2012, and analyzes macroscopic trends and network changes to citation relationships among papers and the co-occurrence relationships of key words by utilizing social network analysis measures. Through the analysis, we can identify the relationships and connections among research topics in cloud computing related areas, and highlight new potential research topics. In addition, we visualize dynamic changes of research topics relating to cloud computing using a proposed cloud computing "research trend map." A research trend map visualizes positions of research topics in two-dimensional space. Frequencies of key words (X-axis) and the rates of increase in the degree centrality of key words (Y-axis) are used as the two dimensions of the research trend map. Based on the values of the two dimensions, the two dimensional space of a research map is divided into four areas: maturation, growth, promising, and decline. An area with high keyword frequency, but low rates of increase of degree centrality is defined as a mature technology area; the area where both keyword frequency and the increase rate of degree centrality are high is defined as a growth technology area; the area where the keyword frequency is low, but the rate of increase in the degree centrality is high is defined as a promising technology area; and the area where both keyword frequency and the rate of degree centrality are low is defined as a declining technology area. Based on this method, cloud computing research trend maps make it possible to easily grasp the main research trends in cloud computing, and to explain the evolution of research topics. According to the results of an analysis of citation relationships, research papers on security, distributed processing, and optical networking for cloud computing are on the top based on the page-rank measure. From the analysis of key words in research papers, cloud computing and grid computing showed high centrality in 2009, and key words dealing with main elemental technologies such as data outsourcing, error detection methods, and infrastructure construction showed high centrality in 2010~2011. In 2012, security, virtualization, and resource management showed high centrality. Moreover, it was found that the interest in the technical issues of cloud computing increases gradually. From annual cloud computing research trend maps, it was verified that security is located in the promising area, virtualization has moved from the promising area to the growth area, and grid computing and distributed system has moved to the declining area. The study results indicate that distributed systems and grid computing received a lot of attention as similar computing paradigms in the early stage of cloud computing research. The early stage of cloud computing was a period focused on understanding and investigating cloud computing as an emergent technology, linking to relevant established computing concepts. After the early stage, security and virtualization technologies became main issues in cloud computing, which is reflected in the movement of security and virtualization technologies from the promising area to the growth area in the cloud computing research trend maps. Moreover, this study revealed that current research in cloud computing has rapidly transferred from a focus on technical issues to for a focus on application issues, such as SLAs (Service Level Agreements).

Stock-Index Invest Model Using News Big Data Opinion Mining (뉴스와 주가 : 빅데이터 감성분석을 통한 지능형 투자의사결정모형)

  • Kim, Yoo-Sin;Kim, Nam-Gyu;Jeong, Seung-Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.143-156
    • /
    • 2012
  • People easily believe that news and stock index are closely related. They think that securing news before anyone else can help them forecast the stock prices and enjoy great profit, or perhaps capture the investment opportunity. However, it is no easy feat to determine to what extent the two are related, come up with the investment decision based on news, or find out such investment information is valid. If the significance of news and its impact on the stock market are analyzed, it will be possible to extract the information that can assist the investment decisions. The reality however is that the world is inundated with a massive wave of news in real time. And news is not patterned text. This study suggests the stock-index invest model based on "News Big Data" opinion mining that systematically collects, categorizes and analyzes the news and creates investment information. To verify the validity of the model, the relationship between the result of news opinion mining and stock-index was empirically analyzed by using statistics. Steps in the mining that converts news into information for investment decision making, are as follows. First, it is indexing information of news after getting a supply of news from news provider that collects news on real-time basis. Not only contents of news but also various information such as media, time, and news type and so on are collected and classified, and then are reworked as variable from which investment decision making can be inferred. Next step is to derive word that can judge polarity by separating text of news contents into morpheme, and to tag positive/negative polarity of each word by comparing this with sentimental dictionary. Third, positive/negative polarity of news is judged by using indexed classification information and scoring rule, and then final investment decision making information is derived according to daily scoring criteria. For this study, KOSPI index and its fluctuation range has been collected for 63 days that stock market was open during 3 months from July 2011 to September in Korea Exchange, and news data was collected by parsing 766 articles of economic news media M company on web page among article carried on stock information>news>main news of portal site Naver.com. In change of the price index of stocks during 3 months, it rose on 33 days and fell on 30 days, and news contents included 197 news articles before opening of stock market, 385 news articles during the session, 184 news articles after closing of market. Results of mining of collected news contents and of comparison with stock price showed that positive/negative opinion of news contents had significant relation with stock price, and change of the price index of stocks could be better explained in case of applying news opinion by deriving in positive/negative ratio instead of judging between simplified positive and negative opinion. And in order to check whether news had an effect on fluctuation of stock price, or at least went ahead of fluctuation of stock price, in the results that change of stock price was compared only with news happening before opening of stock market, it was verified to be statistically significant as well. In addition, because news contained various type and information such as social, economic, and overseas news, and corporate earnings, the present condition of type of industry, market outlook, the present condition of market and so on, it was expected that influence on stock market or significance of the relation would be different according to the type of news, and therefore each type of news was compared with fluctuation of stock price, and the results showed that market condition, outlook, and overseas news was the most useful to explain fluctuation of news. On the contrary, news about individual company was not statistically significant, but opinion mining value showed tendency opposite to stock price, and the reason can be thought to be the appearance of promotional and planned news for preventing stock price from falling. Finally, multiple regression analysis and logistic regression analysis was carried out in order to derive function of investment decision making on the basis of relation between positive/negative opinion of news and stock price, and the results showed that regression equation using variable of market conditions, outlook, and overseas news before opening of stock market was statistically significant, and classification accuracy of logistic regression accuracy results was shown to be 70.0% in rise of stock price, 78.8% in fall of stock price, and 74.6% on average. This study first analyzed relation between news and stock price through analyzing and quantifying sensitivity of atypical news contents by using opinion mining among big data analysis techniques, and furthermore, proposed and verified smart investment decision making model that could systematically carry out opinion mining and derive and support investment information. This shows that news can be used as variable to predict the price index of stocks for investment, and it is expected the model can be used as real investment support system if it is implemented as system and verified in the future.

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.

Automatic gasometer reading system using selective optical character recognition (관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템)

  • Lee, Kyohyuk;Kim, Taeyeon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.1-25
    • /
    • 2020
  • In this paper, we suggest an application system architecture which provides accurate, fast and efficient automatic gasometer reading function. The system captures gasometer image using mobile device camera, transmits the image to a cloud server on top of private LTE network, and analyzes the image to extract character information of device ID and gas usage amount by selective optical character recognition based on deep learning technology. In general, there are many types of character in an image and optical character recognition technology extracts all character information in an image. But some applications need to ignore non-of-interest types of character and only have to focus on some specific types of characters. For an example of the application, automatic gasometer reading system only need to extract device ID and gas usage amount character information from gasometer images to send bill to users. Non-of-interest character strings, such as device type, manufacturer, manufacturing date, specification and etc., are not valuable information to the application. Thus, the application have to analyze point of interest region and specific types of characters to extract valuable information only. We adopted CNN (Convolutional Neural Network) based object detection and CRNN (Convolutional Recurrent Neural Network) technology for selective optical character recognition which only analyze point of interest region for selective character information extraction. We build up 3 neural networks for the application system. The first is a convolutional neural network which detects point of interest region of gas usage amount and device ID information character strings, the second is another convolutional neural network which transforms spatial information of point of interest region to spatial sequential feature vectors, and the third is bi-directional long short term memory network which converts spatial sequential information to character strings using time-series analysis mapping from feature vectors to character strings. In this research, point of interest character strings are device ID and gas usage amount. Device ID consists of 12 arabic character strings and gas usage amount consists of 4 ~ 5 arabic character strings. All system components are implemented in Amazon Web Service Cloud with Intel Zeon E5-2686 v4 CPU and NVidia TESLA V100 GPU. The system architecture adopts master-lave processing structure for efficient and fast parallel processing coping with about 700,000 requests per day. Mobile device captures gasometer image and transmits to master process in AWS cloud. Master process runs on Intel Zeon CPU and pushes reading request from mobile device to an input queue with FIFO (First In First Out) structure. Slave process consists of 3 types of deep neural networks which conduct character recognition process and runs on NVidia GPU module. Slave process is always polling the input queue to get recognition request. If there are some requests from master process in the input queue, slave process converts the image in the input queue to device ID character string, gas usage amount character string and position information of the strings, returns the information to output queue, and switch to idle mode to poll the input queue. Master process gets final information form the output queue and delivers the information to the mobile device. We used total 27,120 gasometer images for training, validation and testing of 3 types of deep neural network. 22,985 images were used for training and validation, 4,135 images were used for testing. We randomly splitted 22,985 images with 8:2 ratio for training and validation respectively for each training epoch. 4,135 test image were categorized into 5 types (Normal, noise, reflex, scale and slant). Normal data is clean image data, noise means image with noise signal, relfex means image with light reflection in gasometer region, scale means images with small object size due to long-distance capturing and slant means images which is not horizontally flat. Final character string recognition accuracies for device ID and gas usage amount of normal data are 0.960 and 0.864 respectively.

A study on the Success Factors and Strategy of Information Technology Investment Based on Intelligent Economic Simulation Modeling (지능형 시뮬레이션 모형을 기반으로 한 정보기술 투자 성과 요인 및 전략 도출에 관한 연구)

  • Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.35-55
    • /
    • 2013
  • Information technology is a critical resource necessary for any company hoping to support and realize its strategic goals, which contribute to growth promotion and sustainable development. The selection of information technology and its strategic use are imperative for the enhanced performance of every aspect of company management, leading a wide range of companies to have invested continuously in information technology. Despite researchers, managers, and policy makers' keen interest in how information technology contributes to organizational performance, there is uncertainty and debate about the result of information technology investment. In other words, researchers and managers cannot easily identify the independent factors that can impact the investment performance of information technology. This is mainly owing to the fact that many factors, ranging from the internal components of a company, strategies, and external customers, are interconnected with the investment performance of information technology. Using an agent-based simulation technique, this research extracts factors expected to affect investment performance on information technology, simplifies the analyses of their relationship with economic modeling, and examines the performance dependent on changes in the factors. In terms of economic modeling, I expand the model that highlights the way in which product quality moderates the relationship between information technology investments and economic performance (Thatcher and Pingry, 2004) by considering the cost of information technology investment and the demand creation resulting from product quality enhancement. For quality enhancement and its consequences for demand creation, I apply the concept of information quality and decision-maker quality (Raghunathan, 1999). This concept implies that the investment on information technology improves the quality of information, which, in turn, improves decision quality and performance, thus enhancing the level of product or service quality. Additionally, I consider the effect of word of mouth among consumers, which creates new demand for a product or service through the information diffusion effect. This demand creation is analyzed with an agent-based simulation model that is widely used for network analyses. Results show that the investment on information technology enhances the quality of a company's product or service, which indirectly affects the economic performance of that company, particularly with regard to factors such as consumer surplus, company profit, and company productivity. Specifically, when a company makes its initial investment in information technology, the resultant increase in the quality of a company's product or service immediately has a positive effect on consumer surplus, but the investment cost has a negative effect on company productivity and profit. As time goes by, the enhancement of the quality of that company's product or service creates new consumer demand through the information diffusion effect. Finally, the new demand positively affects the company's profit and productivity. In terms of the investment strategy for information technology, this study's results also reveal that the selection of information technology needs to be based on analysis of service and the network effect of customers, and demonstrate that information technology implementation should fit into the company's business strategy. Specifically, if a company seeks the short-term enhancement of company performance, it needs to have a one-shot strategy (making a large investment at one time). On the other hand, if a company seeks a long-term sustainable profit structure, it needs to have a split strategy (making several small investments at different times). The findings from this study make several contributions to the literature. In terms of methodology, the study integrates both economic modeling and simulation technique in order to overcome the limitations of each methodology. It also indicates the mediating effect of product quality on the relationship between information technology and the performance of a company. Finally, it analyzes the effect of information technology investment strategies and information diffusion among consumers on the investment performance of information technology.

Developing the Process and Characteristics of Preservation of Area-Based Heritage Sites in Japan (일본 면형 유산 보존제도의 확산과정과 특성)

  • Sung, Wonseok;Kang, Dongjin
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.4
    • /
    • pp.32-59
    • /
    • 2020
  • South Korea's area-based heritage preservation system originates from the "Preservation of Traditional Buildings Act" enacted in 1984. However, this system was abolished in 1996. As there was a need for protection of ancient cities in the 1960s, Japan enacted the Historic City Preservation Act in 1966, and 'Preservation Areas for Historic Landscapes' and 'Special Preservation Districts for Historic Landscapes' were introduced. For the preservation of area-based heritage sites, the 'Important Preservation Districts for Groups of Traditional Buildings' system introduced as part of the revision of the Cultural Heritage Protection Act in 1975 was the beginning. Then, in the early-2000s, discussions on the preservation of area-based heritage sites began in earnest, and the 'Important Cultural Landscape' system was introduced for protection of the space and context between heritage sites. Also, '33 Groups of Modernization Industry Heritage Sites' were designated in 2007, covering various material and immaterial resources related to the modernization of Japan, and '100 Beautiful Historic Landscapes of Japan' were selected for protection of local landscapes with historic value in the same year. In 2015, the "Japanese Heritage" system was established for the integrated preservation and management of tangible and intangible heritage aspects located in specific areas; in 2016, the "Japanese Agricultural Heritage" system was established for the succession and fostering of the disappearing agriculture and fishery industries; and in 2017, "the 20th Century Heritage," was established, representing evidence of modern and contemporary Japanese technologies in the 20th century. As a result, presently (in September 2020), 30 'Historic Landscape Preservation Areas', 60 'Historic Landscape Special Districts,' 120 'Important Preservation Districts for Groups of Traditional Buildings," 65 'Important Cultural Landscapes,' 66 'Groups of Modernization Industry Heritage Sites,' 264 "100 Beautiful Historic Landscapes of Japan,' 104 'Japanese Heritage Sites,' and 15 'Japanese Agricultural Heritage Sites' have been designated. According to this perception of situations, the research process for this study with its basic purpose of extracting the general characteristics of Japan's area-based heritage preservation system, has sequentially spread since 1976 as follows. First, this study investigates Japan's area-based heritage site preservation system and sets the scope of research through discussions of literature and preceding studies. Second, this study investigates the process of the spread of the area-based heritage site preservation system and analyzes the relationship between the systems according to their development, in order to draw upon their characteristics. Third, to concretize content related to relationships and characteristics, this study involves in-depth analysis of three representative examples and sums them up to identify the characteristics of Japan's area-based heritage system. A noticeable characteristic of Japan's area-based heritage site preservation system drawn from this is that new heritage sites are born each year. Consequently, an overlapping phenomenon takes place between heritage sites, and such phenomena occur alongside revitalization of related industries, traditional industry, and cultural tourism and the improvement of localities as well as the preservation of area-based heritage. These characteristics can be applied as suggestions for the revitalization of the 'modern historical and cultural space' system implemented by South Korea.

Musical Analysis of Jindo Dasiraegi music for the Scene of Performing Arts Contents (연희현장에서의 올바른 활용을 위한 진도다시래기 음악분석)

  • Han, Seung Seok;Nam, Cho Long
    • (The) Research of the performance art and culture
    • /
    • no.25
    • /
    • pp.253-289
    • /
    • 2012
  • Dasiraegi is a traditional funeral rite performance of Jindo located in the South Jeolla Province of South Korea. With its unique stylistic structure including various dances, songs and witty dialogues, and a storyline depicting the birth of a new life in the wake of death, embodying the Buddhism belief that life and death is interconnected; it attracted great interest from performance organizers and performers who were desperately seeking new contents that can be put on stage as a performance. It is needless to say previous research on Dasiraegi had been most valuable in its recreation as it analyzed the performance from a wide range of perspectives. Despite its contributions, the previous researches were mainly academic focusing on: the symbolic meanings of the performance, basic introduction to the components of the performance such as script, lyrics, witty dialogue, appearance (costume and make-up), stage properties, rhythm, dance and etc., lacking accurate representation of the most crucial element of the performance which is sori (song). For this reason, the study analyzes the music of Dasiraegi and presents its musical characteristics along with its scores to provide practical support for performers who are active in the field. Out of all the numbers in Dasiraegi, this study analyzed all of Geosa-nori and Sadang-nori, the funeral dirge (mourning chant) sung as the performers come on stage and Gasangjae-nori, because among the five proceedings of the funeral rite they were the most commonly performed. There are a plethora of performance recordings to choose from, however, this study chose Jindo Dasiraegi, an album released by E&E Media. The album offers high quality recordings of performances, but more importantly, it is easy to obtain and utilize for performers who want to learn the Dasiraegi based on the script provided in this study. The musical analysis discovered a number of interesting findings. Firstly, most of the songs in Dasiraegi use a typical Yukjabaegi-tori which applies the Mi scale frequently containing cut-off (breaking) sounds. Although, Southern Kyoung-tori which applies the Sol scale was used, it was only in limited parts and was musically incomplete. Secondly, there was no musical affinity between Ssitgim-gut and Dasiraegi albeit both are for funeral rites. The fundamental difference in character and function of Ssitgim-gut and Dasiraegi may be the reason behind this lack of affinity, as Ssitgim-gut is sung to guide the deceased to heaven by comforting him/her, whereas, Dasiaregi is sung to reinvigorate the lives of the living. Lastly, traces of musical grammar found in Pansori are present in the earlier part of Dasiraegi. This may be attributed to the master artist (Designee of Important Intangible Cultural Heritage), who was instrumental in the restoration and hand-down of Dasiaregi, and his experience in a Changgeuk company. The performer's experience with Changgeuk may have induced the alterations in Dasiraegi, causing it to deviate from its original form. On the other hand, it expanded the performative bais by enhancing the performance aspect of Dasiraegi allowing it to be utilized as contents for Performing Arts. It would be meaningful to see this study utilized to benefit future performance artists, taking Dasiraegi as their inspiration, which overcomes the loss of death and invigorates the vibrancy of life.

The Study of Korean-style Leadership (The Great Cause?Oriented and Confidence-Oriented Leadership) (대의와 신뢰 중시의 한국형 리더십 연구)

  • Park, sang ree
    • The Journal of Korean Philosophical History
    • /
    • no.23
    • /
    • pp.99-128
    • /
    • 2008
  • This research analyzes some Korean historical figures and presents the core values of their leaderships so that we can bring up the theory of leadership which would be compatible with the current circumstances around Korea. Through this work, we expected that we would not only find out typical examples among historical leaders but also reaffirm our identities in our history. As a result of the research, it was possible to classify some figures in history into several patterns and discover their archetypal qualities. Those qualities were 'transform(實事)', 'challenge(決死)', 'energize(風流)', 'create(創案)', and 'envision(開新)' respectively. Among the qualities, this research concentrated on the quality of 'challenge', exclusively 'death-defying spirit'. This spirit is the one with which historical leaders could sacrifice their lives for their great causes. This research selected twelve figures as incarnations of death-defying spirit, who are Gyebaek(階伯), Ganggamchan(姜邯贊), Euljimundeok(乙支文德), Choeyoung(崔瑩),ChungMongju(鄭夢周), Seongsammun (成三問), Yisunsin(李舜臣), Gwakjaewoo(郭再祐), Choeikhyeon(崔益鉉), Anjunggeun(安重根), Yunbonggil(尹奉吉), Yijun(李儁). Through analyzing their core values and abilities and categorizing some historical cases into four spheres such as a private sphere, relations sphere, a community sphere, and a society sphere, we came to find a certain element in common among those figures. It was that they eventually took the lead by showing the goal and the ideal to their people at all times. Moreover, their goals were always not only obvious but also unwavering. In the second chapter, I described the core value in a private sphere, so called '志靑靑'. It implies that a leader should set his ultimate goal and then try to attain it with an unyielding will. Obvious self-confidence and unfailing self-creed are core values in a private sphere. In the third chapter, I described the core value in a relative sphere, the relationship between one and others. It is '守信結義'. It indicates that a leader should win confidence from others by discharging his duties in the relation with others. Confidence is the highest leveled affection to others. Thus, mutual reliance should be based on truthful sincerity and affection toward others. Stubbornness and strictness are needed not to be prompted by pity simultaneously. In the fourth chapter, I described the core value in a community sphere. It is '丹心合力'. For this value, what are required to a leader are both his community spirit and his loyalty to one's community. Moreover, the strong sense of responsibility and the attitude of taking an initiative among others are also required. Thus, it can be said that the great power to conduct the community is so called fine teamwork. What's more, the attitude of the leader can exert a great influence on his community. In the fifth chapter, I described the core value of death defying spirit in the society sphere. This value might be more definite and explicit than other ones described above. A leader should prepare willingly for one's death to fulfill his great duties. 'What to do' is more important for a leader than 'how to do'. That is to say, a leader should always do righteous things. Efficiency is nothing but one of his interests. A leader must be the one who behaves himself always according to righteousness. Unless a leader's behaviors are based on righteousness, it is absolutely impossible that a leader exerts his leadership toward people very efficiently. Thus, it can be said that a true leader is the one not only who is of morality and but also who tries to fulfill his duties.

A Study on Heo Gyun's 'Clean(Cheong: 淸)' Kind Style Examined through Style Terminologies in Seongsushihwa(『惺叟詩話』) (『성수시화(惺叟詩話)』 속 풍격(風格) 용어(用語)를 통해 본 허균(許筠)의 '청(淸)'계열(系列) 풍격(風格) 연구(硏究) - 청경(淸勁)'·'청절(淸切)'·'청초(淸楚)'·'청월(淸越)'을 중심으로 -)

  • Yoon, Jaehwan
    • (The)Study of the Eastern Classic
    • /
    • no.63
    • /
    • pp.9-41
    • /
    • 2016
  • This paper focuses on 'clean(cheong: 淸)' kinds of style terminologies among various style terminologies appearing in Heo Gyun's Seongsushihwa("惺?詩話") and tries to analyze the distinctive points which 'clean(cheong: 淸)' kinds of style terminologies include. In Heo Gyun's Seongsushihwa, 11 of 'clean' kinds of style terminologies, such as "cheonggyeong(淸勁), cheonghryang(淸亮), cheongryeo(淸麗), cheongseom(淸贍), cheongso(淸?), cheongweol(淸越), cheongjang(淸壯), cheongjeol(淸絶), cheongjeol(淸切), cheongchang(淸?), cheongcho(淸楚)," were used. This paper focuses and analyzes 'cheonggyeong(淸勁)', 'cheongjeol(淸切)', 'cheongcho(淸楚)', and 'cheongweol(淸越)' that he suggested through applying to real literary pieces. The result of analysis indicates that 'clean' kinds of style terminologies 'cheonggyeong', 'cheongjeol', 'cheongcho', and 'cheongweol' share the same 1st character 'clean(淸)', yet have distinctive qualities by the 2nd characters. These 4 style terminologies all share 'cheong(淸)' image which means clear and clean, yet each one has the attribute of the 2nd character that indicates each one's individual characteristic. It is apparent that 'Cheonggyeong(淸勁)' reflects the 'gyeong(勁)' image meaning upright and solid and implies poems of poets' steadfast spirit within clear boundary; 'cheongjeol(淸切)' reflects the 'jeol(切)' image meaning either desperation and imminence or pitifulness and sorrow and implies poems of poets' urgent and pitiful emotions within clear and clean boundary; 'cheongcho(淸楚)' reflects the 'cho(楚)' image meaning either delicacy and fineness or slenderness and tenderness and implies poems of poets' beautiful but not luxurious, delicate and tender emotions within clear and clean boundary; and 'cheongweol(淸越)' reflects the image of 'weol(越)' meaning unworldliness and excellency and implies poems, within clear and clean boundary, of excellent appearance and mentality surpassing mundane world. Compared with the 1st character's attributes of the style terminologies which Heo Gyun used, the 2nd characters's attributes do not appear that vivid. Especially, in the case that the 2nd characters have similar meanings, it is not easy to clarify the categories. Indeed, in order to grasp clear and distinctive qualities of style terminologies, the kinds of them need to be initially categorized by the 1st characters, and then sorted by the 2nd characters. In this case, the contents which the 2nd characters of style terminologies indicate should be considered. It is because style terminologies explain both literary pieces' aesthetic qualities and writers' personalities, and because explanations about literary pieces' aesthetic qualities includes not only the conclusive poetic or semantic boundaries which literary pieces' created but also literary pieces' creation processes and expression techniques. Through the style terminologies with Heo Gyun used in Seongsushihwa, it can be aware that he evaluated poems focussing more on the conclusive semantic boundaries that poets' spirits and poems created than expression techniques or creation methods. The overall aspects Heo Gyun's such style criticism has will be checked out in more detail through further studies by examining more materials.