• Title/Summary/Keyword: Analytics Results

Search Result 282, Processing Time 0.024 seconds

Development and Application of Dynamic Visualization Model for Spatial Big Data (공간 빅데이터를 위한 동태적 시각화 모형의 개발과 적용)

  • KIM, Dong-han;KIM, David
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.1
    • /
    • pp.57-70
    • /
    • 2018
  • The advancement and the spread of information and communication technology (ICT) changes the way we live and act. Computer and ICT devices become smaller and invisible, and they are now virtually everywhere in the world. Many socio-economic activities are now subject to the use of computer and ICT devices although we don't really recognize it. Various socio economic activities supported by digital devices leave digital records, and a myriad of these records becomes what we call'big data'. Big data differ from conventional data we have collected and managed in that it holds more detailed information of socio-economic activities. Thus, they offer not only new insight for our society and but also new opportunity for policy analysis. However, the use of big data requires development of new methods and tools as well as consideration of institutional issues such as privacy. The goals of this research are twofold. Firstly, it aims to understand the opportunities and challenges of using big data for planning support. Big data indeed is a big sum of microscopic and dynamic data, and this challenges conventional analytical methods and planning support tools. Secondly, it seeks to suggest ways of visualizing such spatial big data for planning support. In this regards, this study attempts to develop a dynamic visualization model and conducts an experimental case study with mobile phone big data for the Jeju island. Since the off-the-shelf commercial software for the analysis of spatial big data is not yet commonly available, the roles of open source software and computer programming are important. This research presents a pilot model of dynamic visualization for spatial big data, as well as results from them. Then, the study concludes with future studies and implications to promote the use of spatial big data in urban planning field.

Effect of Emotional Elements in Personal Relationships on Multiple Personas from the Perspective of Teenage SNS Users (SNS 상의 대인관계에서 나타나는 감정적 요소와 청소년의 온라인 다중정체성 간의 영향관계)

  • Choi, Bomi;Park, Minjung;Chai, Sangmi
    • Information Systems Review
    • /
    • v.18 no.2
    • /
    • pp.199-223
    • /
    • 2016
  • As social networking services (SNS) become widely used tools for maintaining social relationships, people use SNS to express themselves online. Users are free to form multiple characters in SNS because of online anonymity. This phenomenon causes SNS users to easily demonstrate multiple personas that are different from their identities in the real world. Therefore, this study focuses on online multi-personas that establish multiple fake identities in the SNS environment. The main objective of this study is to investigate factors that affect online multi-personas. Fake online identities can have various negative consequences such as cyber bullying, cyber vandalism, or antisocial behavior. Since the boundary between the online and offline worlds is fading fast, these negative aspects of online behavior may influence offline behaviors as well. This study focuses on teenagers who often create multi-personas online. According to previous studies, personal identities are usually established during a person's youth. Based on data on 664 teenage users, this study identifies four emotional factors, namely, closeness with others, relative deprivation, peer pressure and social norms. According to data analysis results, three factors (except closeness with others) have positive correlations with users' multi-personas. This study contributes to the literature by identifying the factors that cause young people to form online multi-personas, an issue that has not been fully discussed in previous studies. From a practical perspective, this study provides a basis for a safe online environment by explaining the reasons for creating fake SNS identities.

Application of Web Query Information for Forecasting Korean Unemployment Rate (실업률 예측을 위한 인터넷 검색 정보의 활용)

  • Kwon, Chi-Myung;Hwang, Sung-Won;Jung, Jae-Un
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.2
    • /
    • pp.31-39
    • /
    • 2015
  • Unemployment is related to social issues as well as personal economics activity so various policies have been made to reduce the unemployment rate in many countries. Because of delay inherent in the survey mechanism to collect unemployment data, it takes lots of time to acquire survey unemployment data. To develop proper policies for reducing unemployment rate at the right time, it is quite critical to obtain faster and more accurate information concerning about unemployment level. To remedy this problem, recently an advanced analytics utilizing internet queries is suggested. To examine the potential of Web query information, this research investigates the usefulness of internet activity data to predict Korean unemployment rate. One of selected web-query data(unemployment claim) has a quite strong correlation with unemployment rate. This research employes a time series approach of the ARIMA model that utilizes the information of keyword queries provided by the Naver(Korean representative portal site) trend together with unemployment rate data provisioned from Statistics Korea. With respect to model selection guidelines of mean squared error and prediction error, the model with utilizing the web query information shows better results than the model without such information. This suggests that there is a strong potential for the used method, which needs to be further explored.

Big-Data Traffic Analysis for the Campus Network Resource Efficiency (학내 망 자원 효율화를 위한 빅 데이터 트래픽 분석)

  • An, Hyun-Min;Lee, Su-Kang;Sim, Kyu-Seok;Kim, Ik-Han;Jin, Seo-Hoon;Kim, Myung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.541-550
    • /
    • 2015
  • The importance of efficient enterprise network management has been emphasized continuously because of the rapid utilization of Internet in a limited resource environment. For the efficient network management, the management policy that reflects the characteristics of a specific network extracted from long-term traffic analysis is essential. However, the long-term traffic data could not be handled in the past and there was only simple analysis with the shot-term traffic data. However, as the big data analytics platforms are developed, the long-term traffic data can be analyzed easily. Recently, enterprise network resource efficiency through the long-term traffic analysis is required. In this paper, we propose the methods of collecting, storing and managing the long-term enterprise traffic data. We define several classification categories, and propose a novel network resource efficiency through the multidirectional statistical analysis of classified long-term traffic. The proposed method adopted to the campus network for the evaluation. The analysis results shows that, for the efficient enterprise network management, the QoS policy must be adopted in different rules that is tuned by time, space, and the purpose.

An Investigation of Users' Privacy Protection Behaviors: Factors Affecting Privacy Protection Technology Adoption (개인정보보호 기술 수용행동에 영향을 미치는 요인에 대한 연구)

  • Choi, Bomi;Park, Minjung;Chai, Sangmi
    • Information Systems Review
    • /
    • v.17 no.3
    • /
    • pp.77-94
    • /
    • 2015
  • As Internet has become a popular media for sharing information, users create and share tremendous volume of information including large amount of personal information in cyberspace. Sharing private information online can enhance strength of social relationship but it could also bring negative consequences like information privacy invasion. Although many companies and governments address the importance of information privacy online, there are countless cases of crimes and hackings relating personal information online world wide. Since there are some researches investigating the role of governments and organizations on online privacy domain but there is little research regarding users' privacy protection behaviors. This study investigates relationship between Internet users' information privacy protection behavior and environmental factors. Especially, this study focuses on users' behaviors regarding information privacy protection technology adoption. According to our research results, users' online privacy protective behaviors positively affected by governmental regulations expressed as an information privacy protection law. In addition, if user is allowed to use anonymity when he or she uses online services, they have more tendencies to adopt privacy protection technologies. The detailed research findings and contribution are discussed as well.

Analysis and Prediction of Trends for Future Education Reform Centering on the Keyword Extraction from the Research for the Last Two Decades (미래교육 혁신을 위한 트렌드 분석과 예측: 20년간의 문헌 연구 데이터를 기반으로 한 키워드 추출 분석을 중심으로)

  • Jho, Hunkoog
    • Journal of Science Education
    • /
    • v.45 no.2
    • /
    • pp.156-171
    • /
    • 2021
  • This study aims at investigating the characteristics of trends of future education over time though the literature review and examining the accuracy of the framework for forecasting future education proposed by the previous studies by comparing the outcomes between the literature review and media articles. Thus, this study collects the articles dealing with future education searched from the Web of Science and categorized them into four periods during the new millennium. The new articles from media were selected to find out the present of education so that we can figure out the appropriateness of the proposed framework to predict the future of education. Research findings reveal that gradual tendencies of topics could not be found except teacher education and they are diverse from characteristics of agents (students and teachers) to the curriculum and pedagogical strategies. On the other hand, the results of analysis on the media articles focuses more on the projects launched by the government and the immediate responses to the COVID-19, as well as educational technologies related to big data and artificial intelligence. It is surprising that only a few key words are occupied in the latest articles from the literature review and many of them have not been discussed before. This indicates that the predictive framework is not effective to establish the long-term plan for education due to the uncertainty of educational environment, and thus this study will give some implications for developing the model to forecast the future of education.

An Analysis on Determinants of the Capesize Freight Rate and Forecasting Models (케이프선 시장 운임의 결정요인 및 운임예측 모형 분석)

  • Lim, Sang-Seop;Yun, Hee-Sung
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.539-545
    • /
    • 2018
  • In recent years, research on shipping market forecasting with the employment of non-linear AI models has attracted significant interest. In previous studies, input variables were selected with reference to past papers or by relying on the intuitions of the researchers. This paper attempts to address this issue by applying the stepwise regression model and the random forest model to the Cape-size bulk carrier market. The Cape market was selected due to the simplicity of its supply and demand structure. The preliminary selection of the determinants resulted in 16 variables. In the next stage, 8 features from the stepwise regression model and 10 features from the random forest model were screened as important determinants. The chosen variables were used to test both models. Based on the analysis of the models, it was observed that the random forest model outperforms the stepwise regression model. This research is significant because it provides a scientific basis which can be used to find the determinants in shipping market forecasting, and utilize a machine-learning model in the process. The results of this research can be used to enhance the decisions of chartering desks by offering a guideline for market analysis.

Panamax Second-hand Vessel Valuation Model (파나막스 중고선가치 추정모델 연구)

  • Lim, Sang-Seop;Lee, Ki-Hwan;Yang, Huck-Jun;Yun, Hee-Sung
    • Journal of Navigation and Port Research
    • /
    • v.43 no.1
    • /
    • pp.72-78
    • /
    • 2019
  • The second-hand ship market provides immediate access to the freight market for shipping investors. When introducing second-hand vessels, the precise estimate of the price is crucial to the decision-making process because it directly affects the burden of capital cost to investors in the future. Previous studies on the second-hand market have mainly focused on the market efficiency. The number of papers on the estimation of second-hand vessel values is very limited. This study proposes an artificial neural network model that has not been attempted in previous studies. Six factors, freight, new-building price, orderbook, scrap price, age and vessel size, that affect the second-hand ship price were identified through literature review. The employed data is 366 real trading records of Panamax second-hand vessels reported to Clarkson between January 2016 and December 2018. Statistical filtering was carried out through correlation analysis and stepwise regression analysis, and three parameters, which are freight, age and size, were selected. Ten-fold cross validation was used to estimate the hyper-parameters of the artificial neural network model. The result of this study confirmed that the performance of the artificial neural network model is better than that of simple stepwise regression analysis. The application of the statistical verification process and artificial neural network model differentiates this paper from others. In addition, it is expected that a scientific model that satisfies both statistical rationality and accuracy of the results will make a contribution to real-life practices.

Social Big Data-based Co-occurrence Analysis of the Main Person's Characteristics and the Issues in the 2016 Rio Olympics Men's Soccer Games (소셜 빅데이터 기반 2016리우올림픽 축구 관련 이슈 및 인물에 대한 연관단어 분석)

  • Park, SungGeon;Lee, Soowon;Hwang, YoungChan
    • 한국체육학회지인문사회과학편
    • /
    • v.56 no.2
    • /
    • pp.303-320
    • /
    • 2017
  • This paper seeks to better understand the focal issues and persons related to Rio Olympic soccer games through social data science and analytics. This study collected its data from online news articles and comments specific to KOR during the Olympic football games. In order to investigate the public interests for each game and target persons, this study performed the co-occurrence words analysis. Then after, the study applied the NodeXL software to perform its visualization of the results. Through this application and process, the study found several major issues during the Rio Olympic men's football game including the following: the match between KOR and PIJ, KOR player Heungmin Son, commentator Young-Pyo Lee, sportscaster Woo-Jong Jo. The study also showed the general public opinion expressed positive words towards the South Korean national football team during the Rio Olympics, though there existed negative words as well. Furthermore the study revealed positive attitude towards the commentators and casters. In conclusion, the way to increase the public's interest in big sporting events can be achieved by providing the following: contents that include various professional sports analysis, a capable domain expert with thorough preparation, a commentator and/or caster with artistic sense as well as well-spoken, explanatory power and so on. Multidisciplinary research combined with sports science, social science, information technology and media can contribute to a wide range of theoretical studies and practical developments within the sports industry.

A Study on the Conceptual Changes of Extra-solar Planet in University Students Using Text-Mining Techniques (텍스트마이닝을 활용한 대학생들의 외계행성 개념 변화 연구)

  • Han, Shin;Kim, Yong-Ki;Kim, Hyoungbum
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.13 no.3
    • /
    • pp.305-316
    • /
    • 2020
  • This study aimed to analyze the conception of an extra-solar planet perceived by university students. To conduct this, we developed an extra-solar planet education program and questionnaires which help to figure out changes between before and after the program, and then applied them to the targeted students. The results of the study are as follows. First, as to the conception of an extra-solar planet, participants understood it merely as a planet outside the solar system before they got training. However, they expanded it to the one revolving around a star that appears outside the solar system based on keywords after the training. Second, they gave brief responses regarding exploration strategies (e.g., observing the extra-solar planet by using the Doppler effect, dietary phenomenon, and gravitational lens) based on indirect experiences they encountered in the media. The responses indicated their lack of concept of the extra-solar planet exploration methods. However, their recognition of the extra-solar planet observation became concrete while students learned about the exploration of the extra-solar planet. Third, they were expanding the importance of the exoplanet observation simply beyond the discovery of extraterrestrial life to the creative process and research methods, including the solar system and the development of humanity. Fourth, they recognized that exoplanet education is necessary for curriculum as it will be able to bring about students' interest and curiosity as well as scientific knowledge if contents related to the extra-solar planet appear in the earth science curriculum.