• Title/Summary/Keyword: Analytical calculations

Search Result 204, Processing Time 0.023 seconds

A General approach to the wrinkling instability of sandwich plates

  • Vonach, Walter K.;Rammerstorfer, Franz G.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.363-376
    • /
    • 2001
  • Sandwich plates are widely used in lightweight design due to their high strength and stiffness to weight ratio. Due to the heterogeneous structure of sandwich plates, they can exhibit local instabilities (wrinkling), which lead to a sudden loss of stiffness in the structure. This paper presents an analytical solution to the wrinkling problem of sandwich plates. The solution is based on the Rayleigh-Ritz method, by assuming an appropriate deformation field. In contrast to the other approaches up to now, this model takes arbitrary and different orthotropic face layers, finite core thickness and orthotropic core material into account. This approach is the first to cover the wrinkling of unsymmetric sandwiches and sandwiches composed of orthotropic FRP face layers, which are most common in advanced lightweight design. Despite the generality of the solution, the computational effort is kept within bounds. The results have been verified using other analytical solutions and unit cell 3D FE calculations.

Polynomial modeling of confined compressive strength and strain of circular concrete columns

  • Tsai, Hsing-Chih
    • Computers and Concrete
    • /
    • v.11 no.6
    • /
    • pp.603-620
    • /
    • 2013
  • This paper improves genetic programming (GP) and weight genetic programming (WGP) and proposes soft-computing polynomials (SCP) for accurate prediction and visible polynomials. The proposed genetic programming system (GPS) comprises GP, WGP and SCP. To represent confined compressive strength and strain of circular concrete columns in meaningful representations, this paper conducts sensitivity analysis and applies pruning techniques. Analytical results demonstrate that all proposed models perform well in achieving good accuracy and visible formulas; notably, SCP can model problems in polynomial forms. Finally, concrete compressive strength and lateral steel ratio are identified as important to both confined compressive strength and strain of circular concrete columns. By using the suggested formulas, calculations are more accurate than those of analytical models. Moreover, a formula is applied for confined compressive strength based on current data and achieves accuracy comparable to that of neural networks.

Equivalent Circuit Modeling of Underwater Acoustic Piezoelectric Transducer (수중 음향 압전 트랜스듀서의 등가 회로 모델링)

  • Joh, Chee-Young;Seo, Hee-Seon;Lee, Jung-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.77-82
    • /
    • 1996
  • In this paper an identification method is presented to obtain the equivalent electric model of a sandwitch type piezoelectric transducer. Unknown parameters related to the equivalent circuit are identified by solving a nonlinear optimization problem which can minimize an error between the experimental and analytical admittances in air. The proposed method is applied to an example transducer. The validity of equivalent circuit model is demonstrated by the comparison between the experimental measurements and analytical calculations of transmitting voltage response(TVR) and receiving voltage response(RVS).

  • PDF

Dynamic stability of a metal foam rectangular plate

  • Debowski, D.;Magnucki, K.;Malinowski, M.
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.151-168
    • /
    • 2010
  • The subject of the paper is an isotropic metal foam rectangular plate. Mechanical properties of metal foam vary continuously through plate of the thickness. A nonlinear hypothesis of deformation of plane cross section is formulated. The system of partial differential equations of the plate motion is derived on the basis of the Hamilton's principle. The system of equations is analytically solved by the Bubnov-Galerkin method. Numerical investigations of dynamic stability for family rectangular plates with respect analytical solution are performed. Moreover, FEM analysis and theirs comparison with results of numerical-analytical calculations are presented in figures.

Analytical solution for free vibration of multi-span continuous anisotropic plates by the perturbation method

  • Liu, Jiepeng;Cao, Liang;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.283-291
    • /
    • 2019
  • Accurately determining the natural frequencies and mode shapes of a structural floor is an essential step to assess the floor's human-induced vibration serviceability. In the theoretical analysis, the prestressed concrete floor can be idealized as a multi-span continuous anisotropic plate. This paper presents a new analytical approach to determine the natural frequencies and mode shapes of a multi-span continuous orthotropic plate. The suggested approach is based on the combined modal and perturbation method, which differs from other approaches as it decomposes the admissible functions defining the mode shapes by considering the intermodal coupling. The implementation of this technique is simple, requiring no tedious mathematical calculations. The perturbation solution is validated with the numerical results.

Transient analysis of a subcritical reactor core with a MOX-Fuel using the birth-and-death model

  • Korbu, Tamara;Kuzmin, Andrei;Rudak, Eduard;Kravchenko, Maksim
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1731-1735
    • /
    • 2021
  • The operation of the nuclear reactor requires accurate and fast methods and techniques for analysing its kinetics. These techniques become even more important when the MOX-fuel is used due to the lower value of delayed neutron fraction 𝛽 for 239Pu. Based on a Birth-and-Death process review, the mathematical model of thermal reactor core has been proposed different from existing ones. The analytical method for thermal point-reactor parameters evaluation is described within this work. The proposed method is applied for analysis of the unsteady transient processes taking place in a thermal reactor at its start-up or shutdown power change, as well as during small accidental power variation from the rated value. Theoretical determination of MASURCA reactor core reactivity through the analysis of experimental data on neutron time spectra was made.

An analytical algorithm for assessing dynamic characteristics of a triple-tower double-cable suspension bridge

  • Wen-ming Zhang;Yu-peng Chen;Shi-han Wang;Xiao-fan Lu
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.325-343
    • /
    • 2024
  • Triple-tower double-cable suspension bridges have increased confinement stiffness imposed by the main cable on the middle tower, which has bright application prospects. However, vertical bending and torsional vibrations of the double-cable and the girder are coupled in such bridges due to the hangers. In particular, the bending vibration of the towers in the longitudinal direction and torsional vibrations about the vertical axis influence the vertical bending and torsional vibrations of the stiffening girders, respectively. The conventional analytical algorithm for assessing the dynamic features of the suspension bridge is not directly applicable to this type of bridge. This study attempts to mitigate this problem by introducing an analytical algorithm for solving the triple-tower double-cable suspension bridge's natural frequencies and mode shapes. D'Alembert's principle is employed to construct the differential equations of the vertical bending and torsional vibrations of the stiffening girder continuum in each span. Vibrations of stiffening girders in each span are interrelated via the vibrations of the main cables and the bridge towers. On this basis, the natural frequencies and mode shapes are derived by separating variables. The proposed algorithm is then applied to an engineering example. The natural frequencies and mode shapes of vertical bending and torsional vibrations derived by the analytical algorithm agreed well with calculations via the finite element method. The fundamental frequency of vertical bending and first- and second-order torsion frequencies of double-cable suspension bridges are much higher than those of single-cable suspension bridges. The analytical algorithm has high computational efficiency and calculation accuracy, which can provide a reference for selecting appropriate structural parameters to meet the requirements of dynamics during the preliminary design.

A novel analytical approach for advection diffusion equation for radionuclide release from an area source

  • Esmail, S.;Agrawal, P.;Aly, Shaban
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.819-826
    • /
    • 2020
  • The method of the Laplace transform has been used to obtain an analytical solution of the three-dimensional steady state advection diffusion equation for the airborne radionuclide release from any nuclear installation such as the power reactor in an area source. The present treatment takes into account the removal of the pollutants through the nuclear reaction. We assume that the pollutants are emitted as a constant rate from the area source. This physical consideration is achieved by assuming that the vertical eddy diffusivity coefficient should be a constant. The prevailing wind speed is a constant in 𝑥- direction and a linear function of the vertical height z. The present model calculations are compared with the other models and the available data of the atmospheric dispersion experiments that were carried out in the nuclear power plant of Angra dos Reis (Brazil). The results show that the present treatment performs well as the analytical dispersion model and there is a good agreement between the values computed by our model and the observed data.

Approximate calculation of the static analysis of a lifted stay cable in super-long span cable-stayed bridges

  • Zhao, Xinwei;Xiao, Rucheng;Sun, Bin
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.635-655
    • /
    • 2020
  • The sag effect of long stay cables is one of the key factors restricting further increase in the span of cable-stayed bridges. Based on the formerly proposed concept of long stay cables lifted by an auxiliary suspension cable in cross-strait cable-stayed bridges, corresponding static approximate calculations and analytical theory based on catenary and parabolic cable configurations are established. Taking a main span 1400 m cable-stayed bridge as the research object, three typical lifting conditions and the whole process of auxiliary cable lifting are analyzed and discussed. The results show that the sag effect is effectively reduced. The support efficiency is only improved when the cables are lifted above the original cable chord. Reduction of the horizontal component force of the cable is limited. The equivalent elastic modulus and the vertical support stiffness of the lifted cables are significantly increased with increased horizontal projection length and not sensitive to the change of the lifting point position. The scheme of lifting the cable to the chord midpoint is more economical because of the less steel required for the auxiliary suspension cable, but its effect on improving the vertical support efficiency is limited. The support efficiency is better when the cable is lifted to the cable end tangential to the original cable chord, but the lifting force and the cross-sectional area of the auxiliary suspension cable are doubled. The approximate calculation results of the lifted cables are very close to the numerical analysis results, which verifies the applicability of the approximation method proposed in this study. The results of parabolic approximation calculations are approximately equal to that of catenary cable geometry. As the parabolic approximation analysis theory of lifted cables is more convenient in mathematical processing, it is feasible to use parabolic approximation analysis theory as the analytical method for the conceptual design of lifted cables of super-long span cable-stayed bridges.

Theoretical Explanation of the Peak Splitting of Tobacco-Specific N-Nitrosamines in HPLC

  • Jiang, Juxing;Li, Liangchun;Wang, Mingfeng;Xia, Jianjun;Wang, Wenyuan;Xie, Xiaoguang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1722-1728
    • /
    • 2012
  • During the analyzing processes of the compounds, some researchers are puzzled by the analytical signals for some TSNAs (with or without splitting peaks at various pHs and temperatures). In this work, a detailed theoretical study of structural and thermal properties of the $E/Z$ isomers of TSNAs and the corresponding protonated structures was performed using DFT methods. The calculations showed that the $E$ isomers are almost stable than $Z$ isomers, while the $Z$ isomers would be more stable when in protonation. The calculated results predicted the possibility of separation of their $E$ and $Z$ isomer forms and also showed that protonation affects the dipole moment of molecules significantly (0.1-0.5 to 0.7-2.1 Debye). The calculations agreed well with the experiments that the split-up of the HPLC signal for TSNAs into two peaks are very sensitive to the pH and temperature of the mobile-phase.