• Title/Summary/Keyword: Analytical calculations

Search Result 203, Processing Time 0.021 seconds

Development of Manual Multi-Leaf Collimator for Proton Therapy in National Cancer Center (국립암센터의 양성자 치료를 위한 수동형 다엽 콜리메이터 개발)

  • Lee, Nuri;Kim, Tae Yoon;Kang, Dong Yun;Choi, Jae Hyock;Jeong, Jong Hwi;Shin, Dongho;Lim, Young Kyung;Park, Jeonghoon;Kim, Tae Hyun;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.250-257
    • /
    • 2015
  • Multi-leaf collimator (MLC) systems are frequently used to deliver photon-based radiation, and allow conformal shaping of treatment beams. Many proton beam centers currently make use of aperture and snout systems, which involve use of a snout to shape and focus the proton beam, a brass aperture to modify field shape, and an acrylic compensator to modulate depth. However, it needs a lot of time and cost of preparing treatment, therefore, we developed the manual MLC for solving this problem. This study was carried out with the intent of designing an MLC system as an alternative to an aperture block system. Radio-activation and dose due to primary proton beam leakage and the presence of secondary neutrons were taken into account during these iterations. Analytical calculations were used to study the effects of leaf material on activation. We have fabricated tray model for adoption with a wobbling snout ($30{\times}40cm^2$) system which used uniform scanning beam. We designed the manual MLC and tray and can reduce the cost and time for treatment. After leakage test of new tray, we upgrade the tray with brass and made the safety tool. First, we have tested the radio-activation with usually brass and new brass for new manual MLC. It shows similar behavior and decay trend. In addition, we have measured the leakage test of a gantry with new tray and MLC tray, while we exposed the high energy with full modulation process on film dosimetry. The radiation leakage is less than 1%. From these results, we have developed the design of the tray and upgrade for safety. Through the radio-activation behavior, we figure out the proton beam leakage level of safety, where there detects the secondary particle, including neutron. After developing new design of the tray, it will be able to reduce the time and cost of proton treatment. Finally, we have applied in clinic test with original brass aperture and manual MLC and calculated the gamma index, 99.74% between them.

Comparison of Anisotropic Analytic Algorithm Plan and Acuros XB Plan for Lung Stereotactic Ablative Radiotherapy Using Flattening Filter-Free Beams (비편평화여과기 빔을 이용한 폐 정위절제방사선치료를 위한 AAA와 Acuros XB 계산 알고리즘의 치료계획 비교)

  • Chung, Jin-Beom;Eom, Keun-Yong;Kim, In-Ah;Kim, Jae-Sung;Lee, Jeong-Woo;Hong, Semie;Kim, Yon-Lae;Park, Byung-Moon;Kang, Sang-Won;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.210-217
    • /
    • 2014
  • This study investigated the dosimetric effects of different dose calculation algorithm for lung stereotactic ablative radiotherapy (SABR) using flattening filter-free (FFF) beams. A total of 10 patients with lung cancer who were treated with SABR were evaluated. All treatment plans were created using an Acuros XB (AXB) of an Eclipse treatment planning system. An additional plans for comparison of different alagorithm recalcuated with anisotropic analytic algorithm (AAA) algorithm. To address both algorithms, the cumulative dose-volume histogram (DVH) was analyzed for the planning target volume (PTV) and organs at risk (OARs). Technical parameters, such as the computation times and total monitor units (MUs), were also evaluated. A comparison analysis of DVHs from these plans revealed the PTV for AXB estimated a higher maximum dose (5.2%) and lower minimum dose (4.2%) than that of the AAA. The highest dose difference observed 7.06% for the PTV $V_{105%}$. The maximum dose to the lung was also slightly larger in the AXB plans. The percentate volumes of the ipsilateral lung ($V_5$, $V_{10}$, $V_{20}$) receiving 5, 10, and 20 Gy were also larger in AXB plans than for AAA plans. However, these parameters were comparable between both AAA and AXB plans for the contralateral lung. The differences of the maximum dose for the spinal cord and heart were also small. The computation time of AXB plans was 13.7% shorter than that of AAA plans. The average MUs were 3.47% larger for AXB plans than for AAA plans. The results of this study suggest that AXB algorithm can provide advantages such as accurate dose calculations and reduced computation time in lung SABR plan using FFF beams, especially for volumetric modulated arc therapy technique.

Electronic Structure of GaxIn1-xSbyAs1-y: Band Alignments Based on UTB Calculations (GaxIn1-xSbyAs1-y의 전자적 구조: UTB 방법에 의한 밴드정렬상태)

  • Shim, Kyu-Rhee
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.461-467
    • /
    • 2011
  • The valence band maximum and the conduction band miminum of GaAs, GaSb, InAs, and InSb (constituent binaries of the quaternaty alloy $Ga_xIn_{1-x}Sb_yAs_{1-y}$) are calculated by using TB analytical approach method. The band alignment types of their heterojunctions are determined directly from their relative position of band edges (VBM and CBM). For example, the GaAs/InAs, GaAs/InSb, and GaSb/InSb are in a type-I, the GaAs/GaSb in a type-II, and the GaSb/InAs and InSb/InAs in a type-III, respectively. The composition dependent VBM and CBM for the $Ga_xIn_{1-x}Sb_yAs_{1-y}$ alloy are obtained by using the univeral tight binding method. For the alloyed heterojunctions, the band alignments can be controlled by changing the composition which induce a band type transition. For the alloy $Ga_xIn_{1-x}Sb_yAs_{1-y}$ lattice mathced to GaSb, the type-II band alignment in the region of $x{\leq}0.15$ is changed to the type-III in the region of $x{\geq}0.81$. On the other hand, the alloy $Ga_xIn_{1-x}Sb_yAs_{1-y}$ lattice mathced to InAs has the type-II band alignment in the region of $x{\leq}0.15$ and the type-III band alignment in the region of $x{\geq}0.81$, respectively.