• Title/Summary/Keyword: Analytical calculation

Search Result 570, Processing Time 0.023 seconds

Accelerating technique of postbuckling analysis for stiffened composites shell structures (보강된 복합재료 쉘구조물에 대한 좌굴 후 거동해석의 가속화 기법연구)

  • Oh Se Hee;Kim Chun Gon;Kim Kwang Soo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.47-50
    • /
    • 2004
  • It is very important that the analysis of postbuckling characteristics for stiffened composite structure. Damage tolerance design concept has been imported in many aerospace structures design to increase the structural efficiency and material failure is an inevitable process in postbuckling behavior. These design concepts are very efficient but consume very much calculation time in analytical process. The proper analysis method for reducing calculation time was researched and the total analysis time was reduced. A selection of proper element, the large load increments in linear response region, and the termination of analysis for unnecessary region were imported in the analysis and about $70\%$ time reduction was achieved with keeping a high accuracy of results.

  • PDF

The Latent Heat of Phase Transformation of the Carbon Steel and the Calculation of Cooling Curves Including the Latent Heat in Quenching (탄소강 담금질시의 상변태열과 이를 포함한 냉각곡선의 계산)

  • 윤석훈;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.10-16
    • /
    • 1994
  • This study aimed at measuring the latent heat of phase transformation of S45C carbon steel in quenching and at conducting the analytical researches into the calculation of cooling curves including the latent heat. The temperature of phase transformation of steel and its latent heat are dependant upon the cooling rates at the temperature of A1 phase transformation point. The effect of the latent heat of phase transformation is especially manifest at the cooling curve of center of specimens. The higher the cooling rates became, the lower fell the temperature region of phase transformation. In the figures of cooling rates, the phenomena of cooling rate dropping into zero was caused by the latent heat of phase transformation.

  • PDF

An Analytical Slip Factor Based on a Relative Eddy Size Model for Centrifugal Impellers (遠心 임펠러의 相對 渦流 크기 모델에 根據한 이론적인 미끄럼 係數)

  • Paeng, Kee-Seok;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.411-418
    • /
    • 2000
  • By calculating the location and size of the relative eddy formed in the rotating impellers with the logarithmic spiral vanes, a new simple but accurate slip factor is analytically derived. The proposed slip factor depends on only one parameter that is a function of the number of vanes and the vane exit angle. Predicted slip factor for various cases are compared with those estimated by a number of previous slip factors as well as a recent theoretical calculation by Visser et al. ( JFM, Vol. 268, pp. 107-141, 1994). It is found that the present slip factor yields almost similar results to Wiesner's which has been empirically formulated based on the theoretical calculation of Busemann.

Analysis of flexure stiffness and stiffness test in DTG (동조 자이로스코프 서스펜션의 굽힘자 해석 및 시험)

  • Youn, J.O.;Kim, J.H.;Lee, J.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.30-37
    • /
    • 1996
  • The objective of this research is to explore the analysis and test method for the reliable design and fabrication of a high precision dynamically tuned gyroscope. The tuning frequency is decided by the calculation of mass moment of inertia of rotor and gimbal and the stiffness of flexures. Due to the complex geometry of the flexure, calculation of the stiffness of the suspension flexure is difficult. In this paper, three analytical methods for obtaining the stiffness of the flexure are porposed and a special testing method is used for checking the accuracy of the computed results.

  • PDF

Hemi-cube algorithm and its application to thermal analysis of crystal growth furnace (반정육면체 알고리즘 및 단결성 성장로의 열해석에의 응용)

  • Lee, Seung-Bok;Jeong, Jin-Su;Go, Sang, Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.905-914
    • /
    • 1998
  • View factor determination is very important in thermal analysis problems with surface radiation but it is very difficult to determine view factors for complex geometries. Exact calculation of view factors for crystal growth furnace is essential due to not only its high surface temperature but the radiation shield, complicated heating system. In this study, view factor calculation algorithm is introduced and applied to cylindrical crystal growth furnace. This algorithm is based on the Hemi-Cube Algorithm and the results obtained with this algorithm show good agreements with those of analytical solution. As an application of this algorithm, temperature profiles and heating value distributions for various furnaces are calculated and the shape criteria for better furnace are suggested.

Dynamic characteristics of the compressor-combined condenser system (압축기 계가 결합된 응축기의 동특성)

  • Kim, Jae-Dol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.1001-1012
    • /
    • 1998
  • This paper reports the analysis of dynamic characteristics of air-cooled condenser. At first, there is an assumption that the superheated vapor flows into the condenser inlet. And in order to consider the effect of pressure change in the dynamic characteristics of the condenser the combined system of condenser and compressor was used. By using the equation of energy balance and the equation of mass balance, the basic equation for describing the dynamic characteristics of condenser can be derived. The transfer function for describing dynamic response of the condenser to flow rate change outlet can be obtained from using linearizations and Laplace transformations of the equation. From this transfer function, analytical investigation which affects the frequency responses of condenser has been made. Through this study, it became possible that the information about the dynamic characteristics of air-cooled condenser is offered. While the average heat transfer coefficient of the refrigerant side necessary for the theoretical calculation of the dynamic characteristics is given by calculation method for the tube length and pressure drop of air-cooled condenser.

Diagnostic Calculation of Trace Calcium Ions in Food Using a DNA doped Sensor

  • Yang, Young-Kyun;Ly, Suw-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.197-203
    • /
    • 2013
  • The diagnostic assay of calcium ion was sought using a modified sensor with square-wave stripping voltammetry (SWSV) and cyclic voltammetry (CV). In this study, simple graphite pencil was used as working, reference, and auxiliary electrodes. By coating the working electrodes with DNA, their sensitivity was very much improved, and good results were yielded. Moreover, clean seawater was used as an electrolyte solution instead of acid and base electrolytes to lessen the expenses involved in the experiment. The analytical optimum conditions were also examined. These conditions were attained at the low detection limit of $0.6ugL^1$. After that, the results were applied to drinking water of milk contain.

Calculation for Components of Locational Marginal Price considering Demand-Side Bidding in a Competitive Electricity Market (경쟁시장내의 수요자원입찰을 고려한 모선별 한계가격의 구성요소산정 기법)

  • Kim, Hyun-Houng;Kim, Jin-Ho;Park, Jong-Bae;Shin, Joong-Rin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1157-1166
    • /
    • 2008
  • This paper presents a new approach for the evaluation of location marginal prices (LMPs) considering demand-side bidding (DSB) in a competitive electricity market. The stabilization of the electric power supply and demand balance is one of the major important activities in electric power industry. In this paper, we present an analytical method for calculation of LMPs considering DSB, which has opportunity to compete with generating units, as England & Wales Pool's DSB scheme[1]. Also, we propose a new approach that LMP considering DSB is divided into three components. The proposed approach can be used for the evaluation of demand-side bidding into the electricity market and the assessment of the influence of DSB on total production costs and LMPs as well as three components.

Calculations of the Thermal Expansion Coefficient for Rock-Forming Minerals Using Molecular Dynamics (MD) Simulation (분자동역학(MD) 시뮬레이션을 이용한 조암광물의 열팽창 계수 산정)

  • 서용석;배규진
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.269-278
    • /
    • 2001
  • We describe the calculation of thermal expansion coefficients of $\alpha$-quartz, muscovite and albite using a MD simulation method. The selection of interatomic potentials is important for the MD calculation, and we used the 2-body interatomic potential function. The coefficients are calculated using a differential operation of the temperature dependence of the lattice constant obtained from the NPT-ensemble molecular dynamics simulation. Reasonable agreement is found between the analytical results and measured data.

  • PDF

Evaluation of Single Hardening Constitutive Model for Sand (모래에 대한 단일항복면 구성모델의 평가)

  • Jeong, Jin-Seob;Park Moung-Bae
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.6
    • /
    • pp.95-103
    • /
    • 1998
  • Solutions of geotechnical engineering problems require calculation of deformation and stresses during various stages of loading. Powerful numerical methods are available to make such calculation even for complicated problems. To get accurate results, realistic stress-strain relationships of soil are dependent on a number of factors such as soil type, density, stress level and stress path. Attempts are continuously being made to develope analytical models for soils incorporating all such factors. The nature of stress-path dependency, the principle that governs deformations in sand, and the use of Lade's single work-hardening model for predicting sand response for a variety of stress-paths have been investigated and are examined. The test results and the analyses presented show that under some conditions sand exhibits stress-path dependent behavior. The strains calculated from Lade's single work-hardening model are in reasonable agreement with those measured, but some discrepancies occur. The largest difference between measured and calculated strains occurs for proportional loading with increasing stresses and for stress-path directions.

  • PDF