• 제목/요약/키워드: Analytical Stress Analysis

검색결과 874건 처리시간 0.031초

Relevance vector based approach for the prediction of stress intensity factor for the pipe with circumferential crack under cyclic loading

  • Ramachandra Murthy, A.;Vishnuvardhan, S.;Saravanan, M.;Gandhic, P.
    • Structural Engineering and Mechanics
    • /
    • 제72권1호
    • /
    • pp.31-41
    • /
    • 2019
  • Structural integrity assessment of piping components is of paramount important for remaining life prediction, residual strength evaluation and for in-service inspection planning. For accurate prediction of these, a reliable fracture parameter is essential. One of the fracture parameters is stress intensity factor (SIF), which is generally preferred for high strength materials, can be evaluated by using linear elastic fracture mechanics principles. To employ available analytical and numerical procedures for fracture analysis of piping components, it takes considerable amount of time and effort. In view of this, an alternative approach to analytical and finite element analysis, a model based on relevance vector machine (RVM) is developed to predict SIF of part through crack of a piping component under fatigue loading. RVM is based on probabilistic approach and regression and it is established based on Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Model for SIF prediction is developed by using MATLAB software wherein 70% of the data has been used for the development of RVM model and rest of the data is used for validation. The predicted SIF is found to be in good agreement with the corresponding analytical solution, and can be used for damage tolerant analysis of structural components.

An Analysis on Surface Cracking Due to Thermomechanical Loading

  • Kim, S.S.;Lee, K.H.;Lee, S.M.
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.172-176
    • /
    • 1995
  • This study deals with thermomechanical cracking between the friction surface and the interior of the brake disc. Analytical model considered in this study was a semi-infinite solid subjected to the thermal loading of an asperity moving with a high speed. The temperature field and the thermal stress state were obtained and discussed on the basis of Von Mises and Tresca Yielding Criterion. Analytical results showed that the dominant stress in cracking of friction brake is thermal stress and cracking location is dependent on the friction coefficient of contact and Peclet number. On the basis of analytical results thermomechanical cracking model is proposed.

Parametric Analysis of Tubular-Type Linear Magnetic Couplings with Halbach Array Magnetized Permanent Magnet by Using Analytical Force Calculation

  • Kim, Chang-Woo;Choi, Jang-Young
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.110-114
    • /
    • 2016
  • Magnetic couplings are widely used in various industrial applications because they can transmit magnetic force without any mechanical contact. In addition, linear couplings have many advantages. For example, they do not need to convert rotary motion to linear motion. This paper shows an analytical analysis of tubular type linear magnetic couplings (TLMCs) with a Halbach array magnetized permanent magnet (PM). An analytical method for magnetic fields owing to PMs is performed by using magnetic vector potential as well as Poisson and Laplace equations. Then, the magnetic force is calculated by using the Maxwell stress tensor. The analytical analysis results were compared with finite element method (FEM) results. In addition, we predicted the magnetic force characteristic according to design parameters such as the iron core thickness, inner PM thickness to -outer PM thickness ratio, PM segment ratio of the axial magnetized PM segment and radial magnetized PM segment, and various pole numbers.

국부 취화부와 용접 잔류응력 효과를 고려한 원자로 출구노즐 용접부의 피로강도 평가 (Fatigue Assessment of Reactor Vessel Outlet Nozzle Weld Considering the LBZ and Welding Residual Stress Effect)

  • 이세환
    • Journal of Welding and Joining
    • /
    • 제24권2호
    • /
    • pp.48-56
    • /
    • 2006
  • The fatigue strength of the welds is affected by such factors as the weld geometry, microstructures, tensile properties and residual stresses caused by fabrication. It is very important to evaluate the structural integrity of the welds in nuclear power plant because the weldment undergoes the most of damage and failure mechanisms. In this study, the fatigue assessments for a reactor vessel outlet nozzle with the weldment to the piping system are performed considering the welding residual stresses as well as the effect of local brittle zone in the vicinity of the weld fusion line. The analytical approaches employed are the microstructure and mechanical properties prediction by semi-analytical method, the thermal and stress analysis including the welding residual stress analysis by finite element method, the fatigue life assessment by following the ASME Code rules. The calculated results of cumulative usage factors(CUF) are compared for cases of the elastic and elasto-plastic analysis, and with or without residual stress and local brittle zone effects, respectively. Finally, the fatigue life of reactor vessel outlet nozzle weld is slightly affected by the local brittle zone and welding residual stresses.

Cracking behavior of RC shear walls subject to cyclic loadings

  • Kwak, Hyo-Gyoung;Kim, Do-Yeon
    • Computers and Concrete
    • /
    • 제1권1호
    • /
    • pp.77-98
    • /
    • 2004
  • This paper presents a numerical model for simulating the nonlinear response of reinforced concrete (RC) shear walls subject to cyclic loadings. The material behavior of cracked concrete is described by an orthotropic constitutive relation with tension-stiffening and compression softening effects defining equivalent uniaxial stress-strain relation in the axes of orthotropy. Especially in making analytical predictions for inelastic behaviors of RC walls under reversed cyclic loading, some influencing factors inducing the material nonlinearities have been considered. A simple hysteretic stress-strain relation of concrete, which crosses the tension-compression region, is defined. Modification of the hysteretic stress-strain relation of steel is also introduced to reflect a pinching effect depending on the shear span ratio and to represent an average stress distribution in a cracked RC element, respectively. To assess the applicability of the constitutive model for RC element, analytical results are compared with idealized shear panel and shear wall test results under monotonic and cyclic shear loadings.

Study on fracture mechanics of granite specimens with different precast notch depths based on DIC method

  • Shuwen Cao;Hao Shu
    • Geomechanics and Engineering
    • /
    • 제33권4호
    • /
    • pp.393-400
    • /
    • 2023
  • Displacements near crack and stress intensity factor (SIF) are key parameters to solve rock failure issue when using fracture mechanics. In order to study the horizontal displacement and stress intensity factor of the mode I fracture, a series of three-point bending tests of granite specimens with central notch were carried out. The evolution of horizontal displacements of precast notch and crack tip opening displacements (CTOD) were analyzed based on the digital image correlation (DIC) method. Stress intensity factors for three-point bending beams with arbitrary span-to-width ratios(S/W) were calculated by using the WU-Carlsson analytical weight function for edge-crack finite width plate and the analytical solution of un-cracked stress by Filon. The present study provides a high efficient and accurate method for fracture mechanics analysis of the three-point bending granite beams.

직교이방성 재료의 구멍주위에 관한 하이브리드 응력해석시 요소크기의 효과 (Effect of element size in hybrid stress analysis around a hole in loaded orthotropic composites)

  • 백태현
    • 대한기계학회논문집A
    • /
    • 제21권10호
    • /
    • pp.1702-1711
    • /
    • 1997
  • A numerical study for the number of terms of a power series stress function and the effect of hybrid element size on stress analysis around a hole in loaded orthotropic composites is presented. The hybrid method coupling experimental and/or theoretical inputs and complex variable formulations involving conformal mappings and analytical continuity is used to calculate tangential stress on the boundary of the hole in uniaxially loaded, finite width glass epoxy tensile plate. The tests are done by rarying the number of terms, element size and nodal locations on the external boundary of the hybrid region. The numerical results indicate that the hybrid method is accurate and powerful in both experimental and numerical stress analysis.

RC 기둥의 겹침이음파괴 시 철근의 응력 산정 (Calculation of Rebar Stress at Splice Failure of RC Columns)

  • 조재열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.446-449
    • /
    • 2006
  • Several experimental investigations have been carried out to study the behavior of reinforced concrete columns with short lap splices. However, very few analytical models have been developed for the analysis of such columns subjected to earthquakes. As nonlinear analysis procedures become more common in practice (such as those outlined in the Guidelines for Seismic Rehabilitation of Buildings published by the Federal Emergency Management Agency in the United States), the need for an accurate and reliable representation of the nonlinear response of strength degrading systems becomes more important. In this study, an analytical model for estimating the complete response of reinforced concrete columns with short lap splices is presented. The model is based on local bond stress-slip relationships and is validated against independent experimental data from cyclic loading tests on reinforced concrete columns with typical construction details of the 1960s. In this paper a simple equation for calculating the bar stress at splice failure is presented. Use of the proposed equation resulted in excellent agreement between the measured and calculated strength at splice failure.

  • PDF

Effect of thermal gradients on stress/strain distributions in a thin circular symmetric plate

  • Aleksandrova, Nelli N.
    • Structural Engineering and Mechanics
    • /
    • 제58권4호
    • /
    • pp.627-639
    • /
    • 2016
  • The analysis of thermally induced stresses in engineering structures is a very important and necessary task with respect to design and modeling of pressurized containers, heat exchangers, aircrafts segments, etc. to prevent them from failure and improve working conditions. So, the purpose of this study is to investigate elasto-plastic thermal stresses and deformations in a thin annular plate embedded into rigid container. To this end, analytical research devoted to mathematically and physically rigorous stress/strain analysis is performed. In order to evaluate the effect of logarithmic thermal gradients, commonly applied to structures which incorporate thin plate geometries, different thermal parameters such as temperature mismatch and varying constraint temperature were introduced into the model of elastic perfectly-plastic annular plate obeying the von Mises yield criterion with its associated flow rule. The results obtained may be used in sensitive to temperature differences aircraft structures where the thermal effects on equipment must be kept in mind.

Influence of clamped-clamped boundary conditions on the mechanical stress, strain and deformation analyses of cylindrical sport equipment

  • Yuhao Yang;Mohammad Arefi
    • Geomechanics and Engineering
    • /
    • 제35권5호
    • /
    • pp.465-473
    • /
    • 2023
  • The higher order shear deformable model and an exact analytical method is used for analytical bending analysis of a cylindrical shell subjected to mechanical loads, in this work. The shell is modelled using sinusoidal bivariate shear strain theory, and the static governing equations are derived using changes in virtual work. The eigenvalue-eigenvector method is used to exactly solve the governing equations for a constrained cylindrical shell The proposed kinematic relation decomposes the radial displacement into bending, shearing and stretching functions. The main advantage of the method presented in this work is the study of the effect of clamping constraints on the local stresses at the ends. Stress, strain, and deformation analysis of shells through thickness and length.