• 제목/요약/키워드: Analytical Analysis

검색결과 9,353건 처리시간 0.032초

Shrinkage-Induced Stresses at Early Ages in Composite Concrete Beams

  • Park, Dong-Uk;Lee, Chang-Ho
    • KCI Concrete Journal
    • /
    • 제14권1호
    • /
    • pp.15-22
    • /
    • 2002
  • Stresses that develop due to differential shrinkage between polymer modified cement mortar (PM) and Portland cement concrete (PCC) in a repaired concrete beam at early ages were investigated. Interface delamination or debonding of the newly cast repair material from the base is often observed in the field when the drying shrinkage of the repair material is relatively large. This study presents results of both experimental and analytical works. In the experimental part of the study, development of the material properties such as compressive strength, elastic modulus, interface bond strength, creep constant, and drying shrinkage was investigated by testing cylinders and beams for a three-week period in a constant-temperature chamber. Development of shrinkage-induced strains in a PM-PCC composite beam was determined. In the analytical part of the study, two analytical solutions were used to compare the experimental results with the analytically predicted values. One analysis method was of an exact type but could not consider the effect of creep. The other analysis method was rather approximate in nature but the creep effect was included. Comparison between the analytical and the experimental results showed that both analytical procedures resulted in stresses that were in fair agreement with the experimentally determined values. It may be important to consider the creep effect to estimate shrinkage-induced stresses at early ages.

  • PDF

Analytical Tools for Ideological Texts in Critical Reading Instruction

  • Lee, Jong-Hee
    • 영어어문교육
    • /
    • 제10권3호
    • /
    • pp.89-112
    • /
    • 2004
  • This article examines the ways in which language can be exploited in the manipulation of the reader's interpretation of a text to make him/her take certain lines of thought according to the writer's persuasive intents. Such functions of language provide valid foundations to support the teaching of critical reading skills and to explore an adequate approach to discourse analysis. A pilot study was conducted to find out the extent to which the reader can be coaxed into thinking in some fashions guided by specific linguistic devices employed for ideological texts. Forty-seven subjects divided into two groups (humanities majors and natural science majors at undergraduate level) joined the two-fold questionnaire surveys intended to look at their critical reading abilities. The empirical results indicate that college students whose majors are humanities were more inclined to take a holistic approach in processing commercial advertisement texts and their abilities for critical interpretation appeared to be lower than those of the subjects whose majors are natural sciences, who showed a relatively high tendency to take an analytical approach in decoding the textual facts. As a consequence, pedagogic implications for increasing critical reading abilities have resulted in a set of analytical procedures concerning ideological texts which is linked with instructional guidelines to emphasize the importance of the reader's logical and analytical reasoning power, entirely accepted as a general prerequisite for cracking the covert language gambits.

  • PDF

Analytical solution of a contact problem and comparison with the results from FEM

  • Oner, Erdal;Yaylaci, Murat;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • 제54권4호
    • /
    • pp.607-622
    • /
    • 2015
  • This paper presents a comparative study of analytical method and finite element method (FEM) for analysis of a continuous contact problem. The problem consists of two elastic layers loaded by means of a rigid circular punch and resting on semi-infinite plane. It is assumed that all surfaces are frictionless and only compressive normal tractions can be transmitted through the contact areas. Firstly, analytical solution of the problem is obtained by using theory of elasticity and integral transform techniques. Then, finite element model of the problem is constituted using ANSYS software and the two dimensional analysis of the problem is carried out. The contact stresses under rigid circular punch, the contact areas, normal stresses along the axis of symmetry are obtained for both solutions. The results show that contact stresses and the normal stresses obtained from finite element method (FEM) provide boundary conditions of the problem as well as analytical results. Also, the contact areas obtained from finite element method are very close to results obtained from analytical method; disagree by 0.03-1.61%. Finally, it can be said that there is a good agreement between two methods.

탄소섬유쉬트 보강 보의 실험 및 해석적 연구 (An Experimental and analytical study of CFS strengthened Beams)

  • 황진석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제2권4호
    • /
    • pp.177-185
    • /
    • 1998
  • This paper deals with the flexural behaviors of R.C beams strengthened by carbon fiber sheets. The behaviors of strengthened beams which were preloaded up to 50%, 60% and 70% of the ultimate load of unstrengthened beam are compared with that of a beam which was not preloaded. The structural behaviors of strengthened beams are compared with analytical method in terms of load-strain of concrete, load-strain of steel bar, load-strain of CFS and falilure load. Four cases of analytical method are investigated according to cracked section or partially cracked section and including strain hardening effect of steel bar or not. Comparing the results of test and analysis, both are similar in terms of load-strain of concrete, and falilure load, the results of analytical method underestimate the failure load. But each results of load-strain of steel bar, load-strain of CFS near at failure is some different, thus near at failure the composite action between CFS and upper concrete is assumed to be disturbed. Consequently, the analytical method was proved to be efficient and accurate in estimating the flexural response of CFS strengthened RC beams.

  • PDF

Analytical correction of vertical shortening based on measured data in a RC high-rise building

  • Song, Eun-seok;Kim, Jae-yo
    • Advances in concrete construction
    • /
    • 제10권6호
    • /
    • pp.527-536
    • /
    • 2020
  • In this study, a process is proposed to calculate analytical correction values for the vertical shortening of all columns on all floors in a high-rise building that minimizes the error between the structural analysis predictions and values measured during construction. The weight ratio and the most probable value were accordingly considered based on the properties of the shortening value analyzed at several points in each construction stage and the distance between these measured points and unmeasured points at which the shortening was predicted. The effective range and shortening value normalization were considered using the column grouping concept. These tools were applied to calculate the error ratio between the predicted and measured values on a floor where a measured point exists, and then determine the estimated error ratio and estimated error value for the unmeasured point using this error ratio. At points on a floor where no measured point exists, the estimated error ratio and the estimated error value were calculated by applying the most probable value considering the weight ratio for the nearest floor where measured points exist. In this manner, the error values and estimated error values can be determined at all points in a structure. Then, the analytical correction value, defined as this error or estimated error value, was applied by adding it to the predicted value. Finally, the adequacy of the proposed correction method was verified against measurements by applying the analytical corrections to all unmeasured points based on the points where the measurement exists.

Analytical model of isolated bridges considering soil-pile-structure interaction for moderate earthquakes

  • Mohammad Shamsi;Ehsan Moshtagh;Amir H. Vakili
    • Geomechanics and Engineering
    • /
    • 제34권5호
    • /
    • pp.529-545
    • /
    • 2023
  • The coupled soil-pile-structure seismic response is recently in the spotlight of researchers because of its extensive applications in the different fields of engineering such as bridges, offshore platforms, wind turbines, and buildings. In this paper, a simple analytical model is developed to evaluate the dynamic performance of seismically isolated bridges considering triple interactions of soil, piles, and bridges simultaneously. Novel expressions are proposed to present the dynamic behavior of pile groups in inhomogeneous soils with various shear modulus along with depth. Both cohesive and cohesionless soil deposits can be simulated by this analytical model with a generalized function of varied shear modulus along the soil depth belonging to an inhomogeneous stratum. The methodology is discussed in detail and validated by rigorous dynamic solution of 3D continuum modeling, and time history analysis of centrifuge tests. The proposed analytical model accuracy is guaranteed by the acceptable agreement between the experimental/numerical and analytical results. A comparison of the proposed linear model results with nonlinear centrifuge tests showed that during moderate (frequent) earthquakes the relative differences in responses of the superstructure and the pile cap can be ignored. However, during strong excitations, the response calculated in the linear time history analysis is always lower than the real conditions with the nonlinear behavior of the soil-pile-bridge system. The current simple and efficient method provides the accuracy and the least computational costs in comparison to the full three-dimensional analyses.

인증표준물질을 이용한 중금속류와 시안화물 전처리방법 비교 연구 (Evaluation of analytical methods for heavy metals and cyanide by certified reference materials)

  • 정다위;전태완;신선경
    • 분석과학
    • /
    • 제19권2호
    • /
    • pp.163-171
    • /
    • 2006
  • 우리나라 지정폐기물에 함유된 오염물질 분석방법을 제시하기 위해 오니, 폐유, 소각재 등 폐기물 인증표준물질을 확보하여 중금속 종류별 기기별 전처리 방법을 적용 실험하였다. 지정폐기물에 함유된 As, CN, Cd, Cr, Cu, Pb, Hg 7개 항목에 대한 함량시험방법을 제시하였다. 특히, 동일한 전처리 방법이 여러 항목에 적용될 수 있는지를 검토하고, 이들 항목 배출 가능성이 있는 34개 업소 표본사업장을 선정하여 폐기물 시료를 채취하고 제시한 분석방법으로 적용실험을 수행하였다.

Analytical and numerical studies on hollow core slabs strengthened with hybrid FRP and overlay techniques

  • Kankeri, Pradeep;Prakash, S. Suriya;Pachalla, Sameer Kumar Sarma
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.535-546
    • /
    • 2018
  • The objective of this study is to understand the behaviour of hollow core slabs strengthened with FRP and hybrid techniques through numerical and analytical studies. Different strengthening techniques considered in this study are (i) External Bonding (EB) of Carbon Fiber Reinforced Polymer (CFRP) laminates, (ii) Near Surface Mounting (NSM) of CFRP laminates, (iii) Bonded Overlay (BO) using concrete layer, and (iv) hybrid strengthening which is a combination of bonded overlay and NSM or EB. In the numerical studies, three-dimensional Finite Element (FE) models of hollow core slabs were developed considering material and geometrical nonlinearities, and a phased nonlinear analysis was carried out. The analytical calculations were carried out using Response-2000 program which is based on Modified Compression Field Theory (MCFT). Both the numerical and analytical models predicted the behaviour in agreement with experimental results. Parametric studies indicated that increase in the bonded overlay thickness increases the peak load capacity without reducing the displacement ductility. The increase in FRP strengthening ratio increased the capacity but reduced the displacement ductility. The hybrid strengthening technique was found to increase the capacity of the hollow core slabs by more than 100% without compromise in ductility when compared to their individual strengthening schemes.

Analytical study of the failure mode and pullout capacity of suction anchors in sand

  • Liu, Haixiao;Peng, Jinsong;Zhao, Yanbing
    • Ocean Systems Engineering
    • /
    • 제5권4호
    • /
    • pp.279-299
    • /
    • 2015
  • Suction anchors are widely adopted and play an important role in mooring systems. However, how to reliably predict the failure mode and ultimate pullout capacity of the anchor in sand, especially by an easy-to-use theoretical method, is still a great challenge. Existing methods for predicting the inclined pullout capacity of suction anchors in sand are mainly based on experiments or finite element analysis. In the present work, based on a rational mechanical model for suction anchors and the failure mechanism of the anchor in the seabed, an analytical model is developed which can predict the failure mode and ultimate pullout capacity of suction anchors in sand under inclined loading. Detailed parametric analysis is performed to explore the effects of different parameters on the failure mode and ultimate pullout capacity of the anchor. To examine the present model, the results from experiments and finite element analysis are employed to compare with the theoretical predictions, and a general agreement is obtained. An analytical method that can evaluate the optimal position of the attachment point is also proposed in the present study. The present work demonstrates that the failure mode and pullout capacity of suction anchors in sand can be easily and reasonably predicted by the theoretical model, which might be a useful supplement to the experimental and numerical methods in analyzing the behavior of suction anchors.

국내 대기 중 독성 휘발성 유기화합물의 오염 특성(I) - 측정 방법론 평가 - (Characteristics of Atmospheric Concentrations of Toxic Volatile Organic Compounds in Korea ( I ) - Evaluation of Sampling and Analytical Methodology)

  • 백성옥;김미현;김수현;박상곤
    • Environmental Analysis Health and Toxicology
    • /
    • 제17권2호
    • /
    • pp.95-107
    • /
    • 2002
  • This study was designed to investigate the characteristics of atmospheric concentrations of toxic volatile organic compounds (VOCs) in Korea. Target compounds included 1,3-butadiene, aromatics such as BTEX, and a number of carbonyl compounds. In this paper, as the first part of the study, the performance of sampling and analytical methods was evaluated for the measurement of selected VOCs and carbonyl compounds in the ambient air. VOCs were determined by the adsorbent tube sampling and automatic thermal desorption coupled with GC/MSD analysis, while carbonyls by the DNPH-silica cartridge sampling with HPLC analysis. The methodology was investigated with a wide range of performance criteria such as repeatability, linearity. lower detection limits, collection efficiency, thermal conditioning, breakthrough volume and calibration methods using internal standards. In addition, the sampling and analytical methods established in this study were applied to real field samples duplicately collected in various ambient environments. Precisions for the duplicate samples appeared to be comparable with the performance criteria recommended by USEPA TO-17. The overall precision of the sampling and analytical methods was estimated to be within 20 ∼ 30% for major aromatic VOCs such as BTEX, whereas the precision for major carbonyl compounds such as formaldehyde and acetaldehyde was within 10 ∼ 20% for field samples. This study demonstrated that the adsorbent sampling and thermal desorption method can be reliably applied for the measurement of BTEX in ppb levels frequently occurred in common indoor and ambient environments.