• Title/Summary/Keyword: Analytic Solution Method

Search Result 339, Processing Time 0.028 seconds

ENHANCED SEMI-ANALYTIC METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

  • JANG, BONGSOO;KIM, HYUNJU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.283-300
    • /
    • 2019
  • In this paper, we propose a new semi-analytic approach based on the generalized Taylor series for solving nonlinear differential equations of fractional order. Assuming the solution is expanded as the generalized Taylor series, the coefficients of the series can be computed by solving the corresponding recursive relation of the coefficients which is generated by the given problem. This method is called the generalized differential transform method(GDTM). In several literatures the standard GDTM was applied in each sub-domain to obtain an accurate approximation. As noticed in [19], however, a direct application of the GDTM in each sub-domain loses a term of memory which causes an inaccurate approximation. In this work, we derive a new recursive relation of the coefficients that reflects an effect of memory. Several illustrative examples are demonstrated to show the effectiveness of the proposed method. It is shown that the proposed method is robust and accurate for solving nonlinear differential equations of fractional order.

Acoustic Signal based Optimal Route Selection Problem: Performance Comparison of Multi-Attribute Decision Making methods

  • Borkar, Prashant;Sarode, M.V.;Malik, L. G.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.647-669
    • /
    • 2016
  • Multiple attribute for decision making including user preference will increase the complexity of route selection process. Various approaches have been proposed to solve the optimal route selection problem. In this paper, multi attribute decision making (MADM) algorithms such as Simple Additive Weighting (SAW), Weighted Product Method (WPM), Analytic Hierarchy Process (AHP) method and Total Order Preference by Similarity to the Ideal Solution (TOPSIS) methods have been proposed for acoustic signature based optimal route selection to facilitate user with better quality of service. The traffic density state conditions (very low, low, below medium, medium, above medium, high and very high) on the road segment is the occurrence and mixture weightings of traffic noise signals (Tyre, Engine, Air Turbulence, Exhaust, and Honks etc) is considered as one of the attribute in decision making process. The short-term spectral envelope features of the cumulative acoustic signals are extracted using Mel-Frequency Cepstral Coefficients (MFCC) and Adaptive Neuro-Fuzzy Classifier (ANFC) is used to model seven traffic density states. Simple point method and AHP has been used for calculation of weights of decision parameters. Numerical results show that WPM, AHP and TOPSIS provide similar performance.

Analytic solution of Timoshenko beam excited by real seismic support motions

  • Kim, Yong-Woo
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.247-258
    • /
    • 2017
  • Beam-like structures such as bridge, high building and tower, pipes, flexible connecting rods and some robotic manipulators are often excited by support motions. These structures are important in machines and structures. So, this study proposes an analytic method to accurately predict the dynamic behaviors of the structures during support motions or an earthquake. Using Timoshenko beam theory which is valid even for non-slender beams and for high-frequency responses, the analytic responses of fixed-fixed beams subjected to a real seismic motions at supports are illustrated to show the principled approach to the proposed method. The responses of a slender beam obtained by using Timoshenko beam theory are compared with the solutions based on Euler-Bernoulli beam theory to validate the correctness of the proposed method. The dynamic analysis for the fixed-fixed beam subjected to support motions gives useful information to develop an understanding of the structural behavior of the beam. The bending moment and the shear force of a slender beam are governed by dynamic components while those of a stocky beam are governed by static components. Especially, the maximal magnitudes of the bending moment and the shear force of the thick beam are proportional to the difference of support displacements and they are influenced by the seismic wave velocity.

Transient analysis of cross-ply laminated shells using FSDT: Alternative formulation

  • Sahan, Mehmet Fatih
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.889-907
    • /
    • 2015
  • This paper aims to present an alternative analytical method for transient vibration analysis of doubly-curved laminated shells subjected to dynamic loads. In the method proposed, the governing differential equations of laminated shell are derived using the dynamic version of the principle of virtual displacements. The governing equations of first order shear deformation laminated shell are obtained by Navier solution procedure. Time-dependent equations are transformed to the Laplace domain and then Laplace parameter dependent equations are solved numerically. The results obtained in the Laplace domain are transformed to the time domain with the help of modified Durbin's numerical inverse Laplace transform method. Verification of the presented method is carried out by comparing the results with those obtained by Newmark method and ANSYS finite element software. Also effects of number of laminates, different material properties and shell geometries are discussed. The numerical results have proved that the presented procedure is a highly accurate and efficient solution method.

Numerical method of hyperbolic heat conduction equation with wave nature (파동특성을 갖는 쌍곡선형 열전도방정식에 관한 수치해법)

  • 조창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.670-679
    • /
    • 1998
  • The solution of hyperbolic equation with wave nature has sharp discontinuties in the medium at the wave front. Difficulties encounted in the numrtical solution of such problem in clude among oth-ers numerical oscillation and the representation of sharp discontinuities with good resolution at the wave front. In this work inviscid Burgers equation and modified heat conduction equation is intro-duced as hyperboic equation. These equations are caculated by numerical methods(explicit method MacCormack method Total Variation Diminishing(TVD) method) along various Courant numbers and numerical solutions are compared with the exact analytic solution. For inviscid Burgers equa-tion TVD method remains stable and produces high resolution at sharp wave front but for modified heat Conduction equation MacCormack method is recommmanded as numerical technique.

  • PDF

Make-or-buy Decision Framework for School Foodservice System Using Multi-attribute Analysis Method (다-속성분석방법을 이용한 학교급식의 교내/외주결정방법)

  • 황흥석;황현주
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.11a
    • /
    • pp.148-151
    • /
    • 2003
  • Recently school food service operations are confronted with the wide spread pressures for accountability and the need to increase productivity. This paper is concerned with the make-or-buy decision framework for school food service systems considering the multi-attributes in the decision making. For the purpose of considering the multi-attributes analysis method in decision making for the school foodservice, we developed a make-or-buy decision framework using the multi-attribute analysis method, analytic hierarchy process, AHP method for school food service system. Finally, we developed a systematic and practical solution builder for a three-step decision support system in the view of 1) brainstorming for the idea generation, 2) analytic hierarchy process, AHP as a multi-attribute structure ed analysis method, and 3) aggregation logic model to integrate the results of reviewers. We developed web based program and applied it to a school foodservice problem.

  • PDF

A SURVEY ON AMERICAN OPTIONS: OLD APPROACHES AND NEW TRENDS

  • Ahn, Se-Ryoong;Bae, Hyeong-Ohk;Koo, Hyeng-Keun;Lee, Ki-Jung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.791-812
    • /
    • 2011
  • This is a survey on American options. An American option allows its owner the privilege of early exercise, whereas a European option can be exercised only at expiration. Because of this early exercise privilege American option pricing involves an optimal stopping problem; the price of an American option is given as a free boundary value problem associated with a Black-Scholes type partial differential equation. Up until now there is no simple closed-form solution to the problem, but there have been a variety of approaches which contribute to the understanding of the properties of the price and the early exercise boundary. These approaches typically provide numerical or approximate analytic methods to find the price and the boundary. Topics included in this survey are early approaches(trees, finite difference schemes, and quasi-analytic methods), an analytic method of lines and randomization, a homotopy method, analytic approximation of early exercise boundaries, Monte Carlo methods, and relatively recent topics such as model uncertainty, backward stochastic differential equations, and real options. We also provide open problems whose answers are expected to contribute to American option pricing.

Development of a Web-Based Solution Builder for Three-Step Decision Support System

  • Hwang, Heung-Suk
    • Industrial Engineering and Management Systems
    • /
    • v.1 no.1
    • /
    • pp.58-63
    • /
    • 2002
  • Recently a new multi-attribute analysis method is one of the evident areas of important points in the decision support system analysis. The area of decision support system may be broken into three primary area: idea generation, multi-attribute structured analysis method, and the integration of the results of analysis. This research developed an internet/intranet-based solution builder for a three-step decision support system in the view of 1) brainstorming for the idea generation, 2) analytic hierarchy process as a multi-attribute structured analysis method and 3) aggregating logic model to integrate the results of individual analysis. A computer program is developed and demonstrated in internet/intranet-based decision problem. This solution builder provides decision makers a good tool for remote group decision making.

Instability of (Heterogeneous) Euler beam: Deterministic vs. stochastic reduced model approach

  • Ibrahimbegovic, Adnan;Mejia-Nava, Rosa Adela;Hajdo, Emina;Limnios, Nikolaos
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.167-198
    • /
    • 2022
  • In this paper we deal with classical instability problems of heterogeneous Euler beam under conservative loading. It is chosen as the model problem to systematically present several possible solution methods from simplest deterministic to more complex stochastic approach, both of which that can handle more complex engineering problems. We first present classical analytic solution along with rigorous definition of the classical Euler buckling problem starting from homogeneous beam with either simplified linearized theory or the most general geometrically exact beam theory. We then present the numerical solution to this problem by using reduced model constructed by discrete approximation based upon the weak form of the instability problem featuring von Karman (virtual) strain combined with the finite element method. We explain how such numerical approach can easily be adapted to solving instability problems much more complex than classical Euler's beam and in particular for heterogeneous beam, where analytic solution is not readily available. We finally present the stochastic approach making use of the Duffing oscillator, as the corresponding reduced model for heterogeneous Euler's beam within the dynamics framework. We show that such an approach allows computing probability density function quantifying all possible solutions to this instability problem. We conclude that increased computational cost of the stochastic framework is more than compensated by its ability to take into account beam material heterogeneities described in terms of fast oscillating stochastic process, which is typical of time evolution of internal variables describing plasticity and damage.

Solving partial differential equation for atmospheric dispersion of radioactive material using physics-informed neural network

  • Gibeom Kim;Gyunyoung Heo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2305-2314
    • /
    • 2023
  • The governing equations of atmospheric dispersion most often taking the form of a second-order partial differential equation (PDE). Currently, typical computational codes for predicting atmospheric dispersion use the Gaussian plume model that is an analytic solution. A Gaussian model is simple and enables rapid simulations, but it can be difficult to apply to situations with complex model parameters. Recently, a method of solving PDEs using artificial neural networks called physics-informed neural network (PINN) has been proposed. The PINN assumes the latent (hidden) solution of a PDE as an arbitrary neural network model and approximates the solution by optimizing the model. Unlike a Gaussian model, the PINN is intuitive in that it does not require special assumptions and uses the original equation without modifications. In this paper, we describe an approach to atmospheric dispersion modeling using the PINN and show its applicability through simple case studies. The results are compared with analytic and fundamental numerical methods to assess the accuracy and other features. The proposed PINN approximates the solution with reasonable accuracy. Considering that its procedure is divided into training and prediction steps, the PINN also offers the advantage of rapid simulations once the training is over.