• Title/Summary/Keyword: Analysis system

Search Result 70,035, Processing Time 0.101 seconds

Characristics and Management Plans of Myeongwoldae and Myeongwol Village Groves Located in, Jeju (제주 팽림월대(彭林月臺)의 경관특성 및 관리방안)

  • Rho, Jae-Hyun;Oh, Hyun-Kyung;Chol, Yung-Hyun;Kahng, Byung-Seon;Kim, Young-Suk
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.2
    • /
    • pp.68-81
    • /
    • 2014
  • This study was conducted to identify the spacialty, to illuminate the existence and values of Myeongwoldae(明月臺) and Forest Myeongwol, and to suggest the sustainable usage, preservation and management plans with the purpose of ecological and cultural landscaping characteristic and value identification. The result of the study is as follows. Castle Myeongwol and Port Myeongwol shows the status of Hallim-eup Myeongwol District which is the administrative center of western Jeju as well as is the fortress. Building Wolgyejeongsa and School Woohakdang, the head temple of education and culture, located in Myeongwol District represents the spaciality of Myeonwol-ri which was the center of education. Stand Myeongwol is one of the most representative Confucian cultural landscapes in Jeju Island and the field of communion with nature where scholars enjoy poetries, nature, changgi(Korean chess), and go in the Joseon Dynasty period. It was found that the current relics of Myeongwoldae was recovered through the maintenance project conducted by Youth Group Myeongwol composed with Hongjong-si(洪鍾時) as the center during the Japanese colonial era in 1931. It seems that the stonework of Myeongwoldae composed of three levels in the order of square, octagon, and circle based on the heaven-man unity theory of Confucianism and the octagon in the middle is the messenger of Cheonwonjibang(天圓地方), in other words, between the square-shaped earth and the circle-shaped sky. It is assumed that both Grand Bridge Myeongwol and Bridge Myeongwol were constructed as arched bridges in early days. Bridge Myeongwol is the only arched bridge remaining in Jeju Island now, which has the modern cultural heritage value. In Forest Myeongwol, 97 taxa of plants were confirmed and in accordance with 'Taxonomic Group and Class Criteria of Floristic Specific Plants', eight taxa were found; Arachniodes aristata of FD IV and Ilex cornuta, Piper kadsura, Litsea japonica, Melia azedarach, Xylosma congestum, Richosanthes kirilowii var. japonica, Dichondra repens, Viburnum odoratissimum var. awabuki of FD III. Otherwise, 14 taxa of naturalized plants including Apium leptophylihum which is imported to Jeju Island only were confirmed. In Forest Myeongwol, 77 trees including 41 Celtis sinensis, 30 Aphananthe aspera, two Wylosma congestum, a Pinus densiflora, a Camellia japonica, a Melia azedarach, and an Ilex cornuta form a colony. Based on the researched data, the preservation and plans of Myeongwoldae and Forest Myeongwol is suggested as follows. Myeongwoldae, Bridge Myeongwol, and Forest Myeongwol should be managed as one integrated division. Bridge Myeongwol, an arched bridge which is hard to be found in Jeju Island is a high-standard stonework requiring long-term preservation plans. Otherwise, Grand Bridge Myeongwol that is exposed to accident risks because of deterioration and needs safety diagnosis requires measures according to the result of precise safety diagnosis. It is desirable to restore it to a two-sluice arched bridge as its initial shape and to preserve and use it as a representative local landmark with Stand Myeongwol. In addition, considering the topophsis based on the analysis result, the current name of Jeju Special Self-Governing Province Monument No. 19 'Myoengwol Hackberry Colony' should change to 'Myeongwol Hackberry-Muku Tree Colony'. In addition, the serial number system which is composed without distinction of hackberry and muku tree should be improved and the regular monitoring of big and old trees, specific plants, and naturalized species is required.

Strategy for Store Management Using SOM Based on RFM (RFM 기반 SOM을 이용한 매장관리 전략 도출)

  • Jeong, Yoon Jeong;Choi, Il Young;Kim, Jae Kyeong;Choi, Ju Choel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.93-112
    • /
    • 2015
  • Depending on the change in consumer's consumption pattern, existing retail shop has evolved in hypermarket or convenience store offering grocery and daily products mostly. Therefore, it is important to maintain the inventory levels and proper product configuration for effectively utilize the limited space in the retail store and increasing sales. Accordingly, this study proposed proper product configuration and inventory level strategy based on RFM(Recency, Frequency, Monetary) model and SOM(self-organizing map) for manage the retail shop effectively. RFM model is analytic model to analyze customer behaviors based on the past customer's buying activities. And it can differentiates important customers from large data by three variables. R represents recency, which refers to the last purchase of commodities. The latest consuming customer has bigger R. F represents frequency, which refers to the number of transactions in a particular period and M represents monetary, which refers to consumption money amount in a particular period. Thus, RFM method has been known to be a very effective model for customer segmentation. In this study, using a normalized value of the RFM variables, SOM cluster analysis was performed. SOM is regarded as one of the most distinguished artificial neural network models in the unsupervised learning tool space. It is a popular tool for clustering and visualization of high dimensional data in such a way that similar items are grouped spatially close to one another. In particular, it has been successfully applied in various technical fields for finding patterns. In our research, the procedure tries to find sales patterns by analyzing product sales records with Recency, Frequency and Monetary values. And to suggest a business strategy, we conduct the decision tree based on SOM results. To validate the proposed procedure in this study, we adopted the M-mart data collected between 2014.01.01~2014.12.31. Each product get the value of R, F, M, and they are clustered by 9 using SOM. And we also performed three tests using the weekday data, weekend data, whole data in order to analyze the sales pattern change. In order to propose the strategy of each cluster, we examine the criteria of product clustering. The clusters through the SOM can be explained by the characteristics of these clusters of decision trees. As a result, we can suggest the inventory management strategy of each 9 clusters through the suggested procedures of the study. The highest of all three value(R, F, M) cluster's products need to have high level of the inventory as well as to be disposed in a place where it can be increasing customer's path. In contrast, the lowest of all three value(R, F, M) cluster's products need to have low level of inventory as well as to be disposed in a place where visibility is low. The highest R value cluster's products is usually new releases products, and need to be placed on the front of the store. And, manager should decrease inventory levels gradually in the highest F value cluster's products purchased in the past. Because, we assume that cluster has lower R value and the M value than the average value of good. And it can be deduced that product are sold poorly in recent days and total sales also will be lower than the frequency. The procedure presented in this study is expected to contribute to raising the profitability of the retail store. The paper is organized as follows. The second chapter briefly reviews the literature related to this study. The third chapter suggests procedures for research proposals, and the fourth chapter applied suggested procedure using the actual product sales data. Finally, the fifth chapter described the conclusion of the study and further research.

Construction of Event Networks from Large News Data Using Text Mining Techniques (텍스트 마이닝 기법을 적용한 뉴스 데이터에서의 사건 네트워크 구축)

  • Lee, Minchul;Kim, Hea-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.183-203
    • /
    • 2018
  • News articles are the most suitable medium for examining the events occurring at home and abroad. Especially, as the development of information and communication technology has brought various kinds of online news media, the news about the events occurring in society has increased greatly. So automatically summarizing key events from massive amounts of news data will help users to look at many of the events at a glance. In addition, if we build and provide an event network based on the relevance of events, it will be able to greatly help the reader in understanding the current events. In this study, we propose a method for extracting event networks from large news text data. To this end, we first collected Korean political and social articles from March 2016 to March 2017, and integrated the synonyms by leaving only meaningful words through preprocessing using NPMI and Word2Vec. Latent Dirichlet allocation (LDA) topic modeling was used to calculate the subject distribution by date and to find the peak of the subject distribution and to detect the event. A total of 32 topics were extracted from the topic modeling, and the point of occurrence of the event was deduced by looking at the point at which each subject distribution surged. As a result, a total of 85 events were detected, but the final 16 events were filtered and presented using the Gaussian smoothing technique. We also calculated the relevance score between events detected to construct the event network. Using the cosine coefficient between the co-occurred events, we calculated the relevance between the events and connected the events to construct the event network. Finally, we set up the event network by setting each event to each vertex and the relevance score between events to the vertices connecting the vertices. The event network constructed in our methods helped us to sort out major events in the political and social fields in Korea that occurred in the last one year in chronological order and at the same time identify which events are related to certain events. Our approach differs from existing event detection methods in that LDA topic modeling makes it possible to easily analyze large amounts of data and to identify the relevance of events that were difficult to detect in existing event detection. We applied various text mining techniques and Word2vec technique in the text preprocessing to improve the accuracy of the extraction of proper nouns and synthetic nouns, which have been difficult in analyzing existing Korean texts, can be found. In this study, the detection and network configuration techniques of the event have the following advantages in practical application. First, LDA topic modeling, which is unsupervised learning, can easily analyze subject and topic words and distribution from huge amount of data. Also, by using the date information of the collected news articles, it is possible to express the distribution by topic in a time series. Second, we can find out the connection of events in the form of present and summarized form by calculating relevance score and constructing event network by using simultaneous occurrence of topics that are difficult to grasp in existing event detection. It can be seen from the fact that the inter-event relevance-based event network proposed in this study was actually constructed in order of occurrence time. It is also possible to identify what happened as a starting point for a series of events through the event network. The limitation of this study is that the characteristics of LDA topic modeling have different results according to the initial parameters and the number of subjects, and the subject and event name of the analysis result should be given by the subjective judgment of the researcher. Also, since each topic is assumed to be exclusive and independent, it does not take into account the relevance between themes. Subsequent studies need to calculate the relevance between events that are not covered in this study or those that belong to the same subject.

The Effect of Corporate SNS Marketing on User Behavior: Focusing on Facebook Fan Page Analytics (기업의 SNS 마케팅 활동이 이용자 행동에 미치는 영향: 페이스북 팬페이지 애널리틱스를 중심으로)

  • Jeon, Hyeong-Jun;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.75-95
    • /
    • 2020
  • With the growth of social networks, various forms of SNS have emerged. Based on various motivations for use such as interactivity, information exchange, and entertainment, SNS users are also on the fast-growing trend. Facebook is the main SNS channel, and companies have started using Facebook pages as a public relations channel. To this end, in the early stages of operation, companies began to secure a number of fans, and as a result, the number of corporate Facebook fans has recently increased to as many as millions. from a corporate perspective, Facebook is attracting attention because it makes it easier for you to meet the customers you want. Facebook provides an efficient advertising platform based on the numerous data it has. Advertising targeting can be conducted using their demographic characteristics, behavior, or contact information. It is optimized for advertisements that can expose information to a desired target, so that results can be obtained more effectively. it rethink and communicate corporate brand image to customers through contents. The study was conducted through Facebook advertising data, and could be of great help to business people working in the online advertising industry. For this reason, the independent variables used in the research were selected based on the characteristics of the content that the actual business is concerned with. Recently, the company's Facebook page operation goal is to go beyond securing the number of fan pages, branding to promote its brand, and further aiming to communicate with major customers. the main figures for this assessment are Facebook's 'OK', 'Attachment', 'Share', and 'Number of Click' which are the dependent variables of this study. in order to measure the outcome of the target, the consumer's response is set as a key measurable key performance indicator (KPI), and a strategy is set and executed to achieve this. Here, KPI uses Facebook's ad numbers 'reach', 'exposure', 'like', 'share', 'comment', 'clicks', and 'CPC' depending on the situation. in order to achieve the corresponding figures, the consideration of content production must be prior, and in this study, the independent variables were organized by dividing into three considerations for content production into three. The effects of content material, content structure, and message styles on Facebook's user behavior were analyzed using regression analysis. Content materials are related to the content's difficulty, company relevance, and daily involvement. According to existing research, it was very important how the content would attract users' interest. Content could be divided into informative content and interesting content. Informational content is content related to the brand, and information exchange with users is important. Interesting content is defined as posts that are not related to brands related to interesting movies or anecdotes. Based on this, this study started with the assumption that the difficulty, company relevance, and daily involvement have an effect on the dependent variable. In addition, previous studies have found that content types affect Facebook user activity. I think it depends on the combination of photos and text used in the content. Based on this study, the actual photos were used and the hashtag and independent variables were also examined. Finally, we focused on the advertising message. In the previous studies, the effect of advertising messages on users was different depending on whether they were narrative or non-narrative, and furthermore, the influence on message intimacy was different. In this study, we conducted research on the behavior that Facebook users' behavior would be different depending on the language and formality. For dependent variables, 'OK' and 'Full Click Count' are set by every user's action on the content. In this study, we defined each independent variable in the existing study literature and analyzed the effect on the dependent variable, and found that 'good' factors such as 'self association', 'actual use', and 'hidden' are important. Could. Material difficulties', 'actual participation' and 'large scale * difficulties'. In addition, variables such as 'Self Connect', 'Actual Engagement' and 'Sexual Sexual Attention' have been shown to have a significant impact on 'Full Click'. It is expected that through research results, it is possible to contribute to the operation and production strategy of company Facebook operators and content creators by presenting a content strategy optimized for the purpose of the content. In this study, we defined each independent variable in the existing research literature and analyzed its effect on the dependent variable, and we could see that factors on 'good' were significant such as 'self-association', 'reality use', 'concernal material difficulty', 'real-life involvement' and 'massive*difficulty'. In addition, variables such as 'self-connection', 'real-life involvement' and 'formative*attention' were shown to have significant effects for 'full-click'. Through the research results, it is expected that by presenting an optimized content strategy for content purposes, it can contribute to the operation and production strategy of corporate Facebook operators and content producers.

A Study on Risk Parity Asset Allocation Model with XGBoos (XGBoost를 활용한 리스크패리티 자산배분 모형에 관한 연구)

  • Kim, Younghoon;Choi, HeungSik;Kim, SunWoong
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.135-149
    • /
    • 2020
  • Artificial intelligences are changing world. Financial market is also not an exception. Robo-Advisor is actively being developed, making up the weakness of traditional asset allocation methods and replacing the parts that are difficult for the traditional methods. It makes automated investment decisions with artificial intelligence algorithms and is used with various asset allocation models such as mean-variance model, Black-Litterman model and risk parity model. Risk parity model is a typical risk-based asset allocation model which is focused on the volatility of assets. It avoids investment risk structurally. So it has stability in the management of large size fund and it has been widely used in financial field. XGBoost model is a parallel tree-boosting method. It is an optimized gradient boosting model designed to be highly efficient and flexible. It not only makes billions of examples in limited memory environments but is also very fast to learn compared to traditional boosting methods. It is frequently used in various fields of data analysis and has a lot of advantages. So in this study, we propose a new asset allocation model that combines risk parity model and XGBoost machine learning model. This model uses XGBoost to predict the risk of assets and applies the predictive risk to the process of covariance estimation. There are estimated errors between the estimation period and the actual investment period because the optimized asset allocation model estimates the proportion of investments based on historical data. these estimated errors adversely affect the optimized portfolio performance. This study aims to improve the stability and portfolio performance of the model by predicting the volatility of the next investment period and reducing estimated errors of optimized asset allocation model. As a result, it narrows the gap between theory and practice and proposes a more advanced asset allocation model. In this study, we used the Korean stock market price data for a total of 17 years from 2003 to 2019 for the empirical test of the suggested model. The data sets are specifically composed of energy, finance, IT, industrial, material, telecommunication, utility, consumer, health care and staple sectors. We accumulated the value of prediction using moving-window method by 1,000 in-sample and 20 out-of-sample, so we produced a total of 154 rebalancing back-testing results. We analyzed portfolio performance in terms of cumulative rate of return and got a lot of sample data because of long period results. Comparing with traditional risk parity model, this experiment recorded improvements in both cumulative yield and reduction of estimated errors. The total cumulative return is 45.748%, about 5% higher than that of risk parity model and also the estimated errors are reduced in 9 out of 10 industry sectors. The reduction of estimated errors increases stability of the model and makes it easy to apply in practical investment. The results of the experiment showed improvement of portfolio performance by reducing the estimated errors of the optimized asset allocation model. Many financial models and asset allocation models are limited in practical investment because of the most fundamental question of whether the past characteristics of assets will continue into the future in the changing financial market. However, this study not only takes advantage of traditional asset allocation models, but also supplements the limitations of traditional methods and increases stability by predicting the risks of assets with the latest algorithm. There are various studies on parametric estimation methods to reduce the estimated errors in the portfolio optimization. We also suggested a new method to reduce estimated errors in optimized asset allocation model using machine learning. So this study is meaningful in that it proposes an advanced artificial intelligence asset allocation model for the fast-developing financial markets.

Energy expenditure measurement of various physical activity and correlation analysis of body weight and energy expenditure in elementary school children (일부 초등학생의 대표적 신체활동의 에너지소비량 측정 및 에너지소비량과 체중과의 상관성 분석)

  • Kim, Jae-Hee;Son, Hee-Ryoung;Choi, Jung-Sook;Kim, Eun-Kyung
    • Journal of Nutrition and Health
    • /
    • v.48 no.2
    • /
    • pp.180-191
    • /
    • 2015
  • Purpose: There is a lack of data on the energy cost of children's everyday activities, adult values are often used as surrogates. In addition, the influence of body weight on the energy cost of activity when expressed as metabolic equivalents (METs) has not been vigorously explored. Methods: In this study 20 elementary school students 9~12 years of age completed 18 various physical activities while energy expenditure was measured continuously using a portable telemetry gas exchange system ($K_4b^2$, Cosmed, Rome, Italy). Results: The average age was 10.4 years and the average height and weight was 145.1 cm and 43.6 kg, respectively. Oxygen consumption ($VO_2$), energy expenditure and METs at the time of resting of the subjects were 5.41 mL/kg/min, 1.44 kcal/kg/h, and 1.5 METs, respectively. METs values by 18 physical activities were as follows: Homework and reading books (1.6 METs), playing game with a mobile phone or video while sitting (1.6 METs), watching TV while sitting on a comfortable chair (1.7 METs), playing video game or mobile phone game while standing (1.9 METs), sweeping a room with a broom (2.7 METs) and playing a board game (2.8 METs) belong to light intensity physical activities. By contrary, speedy walking and running were 6.6 and 6.7 METs, respectively, which belong to high intensity physical activities over 6.0 METs. When the effect of body weight on physical activity energy expenditure was determined, $R^2$ values increased with 0.116 (playing a game at sitting), 0.176 (climbing up and down stairs), 0.246 (slow walking), and 0.455 (running), which showed that higher activity intensity increased explanation power of body weight on METs value. Conclusion: This study is important for direct evaluation of energy expenditure by physical activities of children, and it could be used directly for revising and complementing the existing activity classification table to fit for children.

Statistical Analysis of Operating Efficiency and Failures of a Medical Linear Accelerator for Ten Years (선형가속기의 10년간 가동률과 고장률에 관한 통계분석)

  • Ju Sang Gyu;Huh Seung Jae;Han Youngyih;Seo Jeong Min;Kim Won Kyou;Kim Tae Jong;Shin Eun Hyuk;Park Ju Young;Yeo Inhwan J.;Choi David R.;Ahn Yong Chan;Park Won;Lim Do Hoon
    • Radiation Oncology Journal
    • /
    • v.23 no.3
    • /
    • pp.186-193
    • /
    • 2005
  • Purpose: To improve the management of a medical linear accelerator, the records of operational failures of a Varian CL2l00C over a ten year period were retrospectively analyzed. Materials and Methods: The failures were classified according to the involved functional subunits, with each class rated Into one of three levels depending on the operational conditions. The relationships between the failure rate and working ratio and between the failure rate and outside temperature were investigated. In addition, the average life time of the main part and the operating efficiency over the last 4 years were analyzed. Results: Among the recorded failures (total 587 failures), the most frequent failure was observed in the parts related with the collimation system, including the monitor chamber, which accounted for $20\%$ of all failures. With regard to the operational conditions, 2nd level of failures, which temporally interrupted treatments, were the most frequent. Third level of failures, which interrupted treatment for more than several hours, were mostly caused by the accelerating subunit. The number of failures was increased with number of treatments and operating time. The average life-times of the Klystron and Thyratron became shorter as the working ratio increased, and were 42 and $83\%$ of the expected values, respectively. The operating efficiency was maintained at $95\%$ or higher, but this value slightly decreased. There was no significant correlation between the number of failures and the outside temperature. Conclusion: The maintenance of detailed equipment problems and failures records over a long period of time can provide good knowledge of equipment function as well as the capability of predicting future failure. Wore rigorous equipment maintenance Is required for old medical linear accelerators for the advanced avoidance of serious failure and to improve the qualify of patient treatment.

Development and application of prediction model of hyperlipidemia using SVM and meta-learning algorithm (SVM과 meta-learning algorithm을 이용한 고지혈증 유병 예측모형 개발과 활용)

  • Lee, Seulki;Shin, Taeksoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.111-124
    • /
    • 2018
  • This study aims to develop a classification model for predicting the occurrence of hyperlipidemia, one of the chronic diseases. Prior studies applying data mining techniques for predicting disease can be classified into a model design study for predicting cardiovascular disease and a study comparing disease prediction research results. In the case of foreign literatures, studies predicting cardiovascular disease were predominant in predicting disease using data mining techniques. Although domestic studies were not much different from those of foreign countries, studies focusing on hypertension and diabetes were mainly conducted. Since hypertension and diabetes as well as chronic diseases, hyperlipidemia, are also of high importance, this study selected hyperlipidemia as the disease to be analyzed. We also developed a model for predicting hyperlipidemia using SVM and meta learning algorithms, which are already known to have excellent predictive power. In order to achieve the purpose of this study, we used data set from Korea Health Panel 2012. The Korean Health Panel produces basic data on the level of health expenditure, health level and health behavior, and has conducted an annual survey since 2008. In this study, 1,088 patients with hyperlipidemia were randomly selected from the hospitalized, outpatient, emergency, and chronic disease data of the Korean Health Panel in 2012, and 1,088 nonpatients were also randomly extracted. A total of 2,176 people were selected for the study. Three methods were used to select input variables for predicting hyperlipidemia. First, stepwise method was performed using logistic regression. Among the 17 variables, the categorical variables(except for length of smoking) are expressed as dummy variables, which are assumed to be separate variables on the basis of the reference group, and these variables were analyzed. Six variables (age, BMI, education level, marital status, smoking status, gender) excluding income level and smoking period were selected based on significance level 0.1. Second, C4.5 as a decision tree algorithm is used. The significant input variables were age, smoking status, and education level. Finally, C4.5 as a decision tree algorithm is used. In SVM, the input variables selected by genetic algorithms consisted of 6 variables such as age, marital status, education level, economic activity, smoking period, and physical activity status, and the input variables selected by genetic algorithms in artificial neural network consist of 3 variables such as age, marital status, and education level. Based on the selected parameters, we compared SVM, meta learning algorithm and other prediction models for hyperlipidemia patients, and compared the classification performances using TP rate and precision. The main results of the analysis are as follows. First, the accuracy of the SVM was 88.4% and the accuracy of the artificial neural network was 86.7%. Second, the accuracy of classification models using the selected input variables through stepwise method was slightly higher than that of classification models using the whole variables. Third, the precision of artificial neural network was higher than that of SVM when only three variables as input variables were selected by decision trees. As a result of classification models based on the input variables selected through the genetic algorithm, classification accuracy of SVM was 88.5% and that of artificial neural network was 87.9%. Finally, this study indicated that stacking as the meta learning algorithm proposed in this study, has the best performance when it uses the predicted outputs of SVM and MLP as input variables of SVM, which is a meta classifier. The purpose of this study was to predict hyperlipidemia, one of the representative chronic diseases. To do this, we used SVM and meta-learning algorithms, which is known to have high accuracy. As a result, the accuracy of classification of hyperlipidemia in the stacking as a meta learner was higher than other meta-learning algorithms. However, the predictive performance of the meta-learning algorithm proposed in this study is the same as that of SVM with the best performance (88.6%) among the single models. The limitations of this study are as follows. First, various variable selection methods were tried, but most variables used in the study were categorical dummy variables. In the case with a large number of categorical variables, the results may be different if continuous variables are used because the model can be better suited to categorical variables such as decision trees than general models such as neural networks. Despite these limitations, this study has significance in predicting hyperlipidemia with hybrid models such as met learning algorithms which have not been studied previously. It can be said that the result of improving the model accuracy by applying various variable selection techniques is meaningful. In addition, it is expected that our proposed model will be effective for the prevention and management of hyperlipidemia.

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.

The Obligation of Return Unjust Enrichment or Compensation for the Use of Flight Safety Zone -Seoul High Court Judgment 2018Na2034474, decided on 2018. 10. 11.- (비행안전구역의 사용에 대한 부당이득반환·손실 보상 의무의 존부 -서울고등법원 2018. 10. 11. 선고 2018나2034474 판결-)

  • Kwon, Chang-Young;Park, Soo-Jin
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.35 no.1
    • /
    • pp.63-101
    • /
    • 2020
  • 'Flight safety zone' means a zone that the Minister of National Defense designates under Articles 4 and 6 of the Protection of Military Bases and Installations Act (hereinafter 'PMBIA') for the safety of flight during takeoff and landing of military aircrafts. The purpose of flight safety zone is to contribute to the national security by providing necessary measures for the protection of military bases and installations and smooth conduct of military operations. In this case, when the state set and used the flight safety zone, the landowner claimed restitution of unjust enrichment against the country. This article is an analysis based on the existing legal theory regarding the legitimacy of plaintiff's claim, and the summary of the discussion is as follows. A person who without any legal ground derives a benefit from the property or services of another and thereby causes loss to the latter shall be bound to return such benefit (Article 741 of the Civil Act). Since the subject matter is an infringing profit, the defendant must prove that he has a legitimate right to retain the profit. The State reserves the right to use over the land designated as a flight safety zone in accordance with legitimate procedures established by the PMBIA for the safe takeoff and landing of military aircrafts. Therefore, it cannot be said that the State gained an unjust enrichment equivalent to the rent over the land without legal cause. Expropriation, use or restriction of private property from public necessity and compensation therefor shall be governed by Act: provided, that in such a case, just compensation shall be paid (Article 23 (1) of the Constitution of The Republic of KOREA). Since there is not any provision in the PMBIA for loss compensation for the case where a flight safety zone is set over land as in this case, next question would be whether or not it is unconstitutional. Even if it is designated as a flight safety zone and the use and profits of the land are limited, the justification of the purpose of the flight safety zone system, the appropriateness of the means, the minimization of infringement, and the balance of legal interests are still recognized; thus just not having any loss compensation clause does not make the act unconstitutional. In conclusion, plaintiff's claim for loss compensation based on the 'Act on Acquisition of and Compensation for land, etc. for Public Works Projects', which has no provision for loss compensation due to public limits, is unjust.