• Title/Summary/Keyword: Analysis stage

Search Result 10,186, Processing Time 0.041 seconds

The Development of the Engineering Leadership Program for Engineering Students

  • Kim, In-Sook
    • Journal of Engineering Education Research
    • /
    • v.17 no.4
    • /
    • pp.21-24
    • /
    • 2014
  • The purpose of this study is to develop the engineering students leadership program and evaluate the pilot test. To this end, literature reviews covering various leadership programs were studied and a needs analysis survey was conducted. The needs analysis survey found that student subjects believe leadership to be an important quality, but that the current availability of leadership training programs is lacking. Furthermore, results of the study are as follows, with respective results listed in descending order. The majority of students selected on-line learning as their preferred training method, followed by blended learning and in-person learning. Students also indicated their preferred instructional method to be through on-line courses. Based on these results, a preliminary pilot program was experimentally launched for only 1 class's use. This process of the development for the Engineering Leadership Program consists of 4 stages. The first stage is a needs analysis survey, followed by the design of the program based on results from the needs analysis survey. Afterwards comes the development stage, followed by the implementation stage, comprised of two parts; the pilot test and the distribution. The final stage is the overall evaluation step. We are currently in the first step of the third stage (the pilot test) and only the overall evaluation stage remains. After the distribution, a follow-up study will be conducted to analyze the effectiveness of the implemented program.

Blank Design in Multi-Stage Rectangular Deep Drawing of Extreme Aspect Ratio (세장비가 큰 다단계 초정밀 사각형 디프드로잉을 위한 블랭크 설계)

  • 박철성;구태완;강범수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.258-261
    • /
    • 2003
  • In this study, finite element analysis for multi-stage deep drawing process of rectangular configuration with extreme aspect ratio is carried out especially for the blank design. The analysis of rectangular deep drawing process with extreme aspect ratio is likewise very difficult with respect to the design process parameters including the intermediate die profile. In order to solve the difficulties, numerical approach using finite element method is performed in the present analysis and design. A series of experiments for multi-stage rectangular deep drawing process are conducted and the deformed configuration is investigated by comparing with the results of the finite element analysis. Additionally, to minimize amount of removal material after trimming process, finite element simulation is applied for the blank modification. The analysis incorporates brick elements for a rigid-plastic finite element method with an explicit time integration scheme using LS-DYNA3D.

  • PDF

Multi-stage Finite Element Inverse Analysis of elliptic Cup Drawing with large aspect ratio considering Intermediate Sliding Constraint Surface (중간 미끄럼 구속면을 고려한 세장비가 큰 타원형 컵 성형 공정의 다단계 유한요소 역해석)

  • 김세호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.21-25
    • /
    • 2000
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of expense and computation time For multi-stage sheet metal forming processes numerical analysis is expense difficult to carry out the to its complexities and convergence problem. It also requires lots of computation time. For the analysis of elliptic cup with large aspect ratio intermediate sliding constraint surfaces are difficult to describe. in this paper multi-stage finite element inverse analysis is applied to multi-stage elliptic cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. To describe intermediate sliding constraint surfaces an analytic scheme is introduced to deal with merged-arc type sliding surfaces.

  • PDF

Reliability Analysis and Reliability Modeling for KSLV-I Upper Stage (KSLV-I 상단부에 대한 신뢰성 분석과 신뢰도 모델링)

  • Shin, Myoung-Ho;Cho, Sang-Yeon
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.183-193
    • /
    • 2008
  • This paper shows the results of failure mode analysis and the system-level reliability model for the flight test of KSLV-I upper stage. First, the critical 14 functions of KSLV-I upper stage are identified and the mission profile of the flight test is analyzed. Then, based on the functional analysis and the mission profile analysis, we construct a hierarchical structure of failure modes and a system-level reliability model for the flight test of KSLV-I upper stage.

  • PDF

Prediction of the welding distortion of large steel structure with mechanical restraint using equivalent load methods

  • Park, Jeong-ung;An, Gyubaek
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.315-325
    • /
    • 2017
  • The design dimension may not be satisfactory at the final stage due to the welding during the assembly stage, leading to cutting or adding the components in large structure constructions. The productivity is depend on accuracy of the welding quality especially at assembly stage. Therefore, it is of utmost importance to decide the component dimension during each assembly stage considering the above situations during the designing stage by exactly predicting welding deformation before the welding is done. Further, if the system that predicts whether welding deformation is equipped, it is possible to take measures to reduce deformation through FE analysis, helping in saving time for correcting work by arresting the parts which are prone to having welding deformation. For the FE analysis to predict the deformation of a large steel structure, calculation time, modeling, constraints in each assembly stage and critical welding length have to be considered. In case of fillet welding deformation, around 300 mm is sufficient as a critical welding length of the specimen as proposed by the existing researches. However, the critical length in case of butt welding is around 1000 mm, which is far longer than that suggested in the existing researches. For the external constraint, which occurs as the geometry of structure is changed according to the assembly stage, constraint factor is drawn from the elastic FE analysis and test results, and the magnitude of equivalent force according to constraint is decided. The comparison study for the elastic FE analysis result and measurement for the large steel structure based on the above results reveals that the analysis results are in the range of 80-118% against measurement values, both matching each other well. Further, the deformation of fillet welding in the main plate among the total block occupies 66-89%, making welding deformation in the main plate far larger than the welding deformation in the longitudinal and transverse girders.

Performance Evaluation of R&D Commercialization : A DEA-Based Three-Stage Model of R&BD Performance (연구개발 사업화 성과 평가 : DEA 기반 3단계 R&BD 성과 모형)

  • Jeon, Ikjin;Lee, Hakyeon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.5
    • /
    • pp.425-438
    • /
    • 2015
  • This study proposes a three-stage model of R&BD performance which captures commercialization outcomes as well as conventional R&D performance. The model is composed of three factors : inputs (R&D budgets and researchers), outputs (patents and papers), and outcomes (technical fees, products sales, and cost savings). Three stages are defined for each transformation process between the three factors : efficiency stage from input to output (stage 1), effectiveness stage from output to outcome (stage 2), and productivity stage from input to outcome (stage 3). The performance of each stage is measured by data envelopment analysis (DEA). DEA is a non-parametric efficiency measurement technique that has widely been used in R&D performance measurement. We measure the performance of 171 projects of 6 public R&BD programs managed by Seoul Business Agency using the proposed three-stage model. In order to provide a balanced and holistic view of R&BD performance, the R&BD performance map is also constructed based on performance of efficiency and productivity stages.

$CO_2$ Reduction Effect Analysis of Modal Shift from Road to Rail using Life Cycle Thinking (전과정을 고려한 도로-철도 Modal Shift $CO_2$ 저감효과 분석)

  • Kim, Cho-Young;Lee, Cheul-Kyu;Choi, Yo-Han;Lee, Kun-Mo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2921-2927
    • /
    • 2011
  • Modal Shift from road to rail has been adapted in several countries as one of effective ways of reducing $CO_2$ emissions caused by transport. Generally, effect analysis of $CO_2$ reduction toward modal shift is calculated mainly from use stage and less consideration from other stages of life cycle, even though, in some case of modal shift needs that new line construction or new vehicle manufacturing. In this study, modal shift effect analysis is performed with considering construction, manufacturing vehicle and use stage. As a result we can get total $CO_2$ reduction effect using life cycle thinking and check the necessity of including other life cycle stage not only considering use stage. In conclusion, there is no $CO_2$ reduction effect if the reduction amount of $CO_2$ in use stage is not bigger than allocated annual amount of $CO_2$ in construction and manufacturing vehicle stage. According to this fact, analysing $CO_2$ reduction effect of Modal Shift should be considered not only the use stage.

  • PDF

Factors affecting Healing of Stage 2 Pressure Ulcer (2단계 욕창 치유에 영향을 주는 요인 분석)

  • Park, Kyung-Hee;Kim, Keum-Soon
    • Journal of Korean Critical Care Nursing
    • /
    • v.3 no.2
    • /
    • pp.1-11
    • /
    • 2010
  • Purpose: This study was designed to identify the factors affecting healing of Stage 2 pressure ulcer in an acute care facility in Korea. Methods: 286 Stage 2 pressure ulcers of 145 patients were examined. Data were collected in the period between October $1^{st}$, 2006 and September $30^{th}$, 2007. Data were analyzed with Kaplan-Meier survival analysis for cumulative recovery rate of Stage 2 pressure ulcers. Cox proportional hazard model was used to examine effects of multiple variables simultaneously. Results: Out of 286 initial Stage 2 pressure ulcers, 204 (71.3%) pressure ulcers healed completely. The median time to heal was 15 days according to Kaplan-Meier survival analysis. Cox proportional hazard model showed that the Stage 2 pressure ulcers healed more quickly when pressure redistribution surfaces were used (p<.001, HR=2.184), patients were administered with vitamins (p= .038, HR=1.451), and the size of the pressure ulcers were small (${\leq}3.0cm^2$, p= .006, HR=1.765). Conclusion: The factors contributing to the healing of Stage 2 pressure ulcer in an acute care setting were the application of pressure redistribution surface, small ulcer size (${\leq}3.0cm^2$), and the administration of vitamins.

  • PDF

Root Cause Analysis on the Steam Turbine Blade Damage of the Combined Cycle Power Plant (복합화력발전소 증기터빈 동익 손상 원인분석)

  • Kang, M.S.;Kim, K.Y.;Yun, W.N.;Lee, W.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.57-63
    • /
    • 2008
  • The last stage blade of the low pressure steam turbine remarkably affects turbine plant performance and availability Turbine manufacturers are continuously developing the low pressure last stage blades using the latest technology in order to achieve higher reliability and improved efficiency. They tend to lengthen the last stage blade and apply shrouds at the blades to enhance turbine efficiency. The long blades increase the blade tip circumferential speed and water droplet erosion at shroud is anticipated. Parts of integral shrouds of the last stage 40 inch blades were cracked and liberated recently in a combined cycle power plant. In order to analyze the root cause of the last stage blades shroud cracks, we investigated operational history, heat balance diagram, damaged blades shape, fractured surface of damaged blades, microstructure examination and design data, etc. Root causes were analyzed as the improper material and design of the blade. Notches induced by erosion and blade shroud were failed eventually by high cycle fatigue. This paper describes the root cause analysis and countermeasures for the steam turbine last stage blade shroud cracks of the combined cycle power plant.

  • PDF

Dynamic Modeling and Input Shaping Control of a Positioning Stage (위치결정 스테이지에 대한 동적 모델링과 입력성형 제어)

  • Park, S.W.;Hong, S.W.;Choi, H.S.;Jang, J.W.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.83-89
    • /
    • 2008
  • This paper presents the dynamic analysis and input shaping control of a positioning stage. Vibration characteristics of the positioning stage are affected not only by the structural dynamics but also by the servo actuators that consist of the mechanism; driving motor and controller. This paper proposes an integrated dynamic model to accommodate both the structural dynamics and the servo actuators. Theoretical modal analysis with a commercial finite element code is carried out to investigate the dynamic characteristics of the experimental positioning stage. Experiments are performed to validate the theoretical modal analysis and estimate the equivalent stiffness due to the servo actuators. This paper deals with an input shaping scheme to suppress vibration of the positioning stage. Input shapers are systematically implemented for the positioning stage in consideration of its dynamics. The effects of servo control gain are also investigated. The experiments show that input shaping effectively removes residual vibrations and then improves the performance of positioning stage.