• Title/Summary/Keyword: Analysis of transaction network

Search Result 124, Processing Time 0.023 seconds

Analysis of Blockchain Network and Cryptocurrency Safety Issues

  • Taegyu Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.40-50
    • /
    • 2023
  • Blockchain is a technology designed to prevent tampering with digital documents or information, safeguarding transaction data and managing it in a structured manner. This proves beneficial in addressing issues of trust and data protection in B2B, B2C, and C2B transactions. Blockchain finds utility not only in financial transactions but also across diverse industrial sectors. This study outlines significant cases and responses that jeopardize the security of blockchain networks and cryptocurrency technology. Additionally, it analyzes safety and risk factors related to blockchain and proposes effective testing methods to preemptively counter these challenges. Furthermore, this study presents key security evaluation metrics for blockchain to ensure a balanced assessment. Additionally, it provides evaluation methods and various test case models for validating the security of blockchain and cryptocurrency transaction services, making them easily applicable to the testing process.

Analysis of Network Traffic using Classification and Association Rule (데이터 마이닝의 분류화와 연관 규칙을 이용한 네트워크 트래픽 분석)

  • 이창언;김응모
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.4
    • /
    • pp.15-23
    • /
    • 2002
  • As recently the network environment and application services have been more complex and diverse, there has. In this paper we introduce a scheme the extract useful information for network management by analyzing traffic data in user login file. For this purpose we use classification and association rule based on episode concept in data mining. Since login data has inherently time series characterization, convertible data mining algorithms cannot directly applied. We generate virtual transaction, classify transactions above threshold value in time window, and simulate the classification algorithm.

  • PDF

Analysis of the Online Review Based on the Theme Using the Hierarchical Attention Network (Hierarchical Attention Network를 활용한 주제에 따른 온라인 고객 리뷰 분석 모델)

  • Jang, In Ho;Park, Ki Yeon;Lee, Zoon Ky
    • Journal of Information Technology Services
    • /
    • v.17 no.2
    • /
    • pp.165-177
    • /
    • 2018
  • Recently, online commerces are becoming more common due to factors such as mobile technology development and smart device dissemination, and online review has a big influence on potential buyer's purchase decision. This study presents a set of analytical methodologies for understanding the meaning of customer reviews of products in online transaction. Using techniques currently developed in deep learning are implemented Hierarchical Attention Network for analyze meaning in online reviews. By using these techniques, we could solve time consuming pre-data analysis time problem and multiple topic problems. To this end, this study analyzes customer reviews of laptops sold in domestic online shopping malls. Our result successfully demonstrates over 90% classification accuracy. Therefore, this study classified the unstructured text data in the semantic analysis and confirmed the practical application possibility of the review analysis process.

Analysis of Passenger Flows in the Subway Transportation Network of the Metropolitan Seoul (서울 수도권 지하철 교통망에서 승객 흐름의 분석)

  • Park, Jong-Soo;Lee, Keum-Sook
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.3
    • /
    • pp.316-323
    • /
    • 2010
  • We propose a method to find flows of transit users in the subway transportation network of the metropolitan Seoul and analyze the passenger flows on some central links of the network. The transportation network consists of vertices for subway stops, edges for links between two adjacent subway stops, and flows on the edges' Each subway transit user makes a passenger flow along edges of the shortest path from the origin stop to the destination stop in his trip. In this paper, we have developed a new algorithm to find the passenger flow of each link in the subway network from a large trip-transaction database of subway transit users. We have applied the algorithm to find the passenger flows from one day database of about 5 million transactions by the subway transit users. As results of the experiments, the travel behavior on 4 central subway links is analyzed in passenger flows and top 10 flows among all subway links are explained in a table.

Improved Characteristic Analysis of a 5-phase Hybrid Stepping Motor Using the Neural Network and Numerical Method

  • Lim, Ki-Chae;Hong, Jung-Pyo;Kim, Gyu-Tak;Im, Tae-Bin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.2
    • /
    • pp.15-21
    • /
    • 2001
  • This paper presents an improved characteristic analysis methodology for a 5-phase hybrid stepping motor. The basic approach is based on the use of equivalent magnetic circuit taking into account the localized saturation throughout the hybrid stepping motor. The finite element method(FEM) is used to generate the magnetic circuit parameters for the complex stator and rotor teeth and airgap considering the saturation effects in tooth and poles. In addition, the neural network is used to map a change of parameters and predicts their approximation. Therefore, the proposed method efficiently improves the accuracy of analysis by using the parameter characterizing localized saturation effects and reduces the computational time by using the neural network. An improved circuit model of 5-phase hybrid stepping motor is presented and its application is provided to demonstrate the effectiveness of the proposed method.

3D Transient Analysis of Linear Induction Motor Using the New Equivalent Magnetic Circuit Network Method

  • Jin Hur;Kang, Gyu-Hong;Hong, Jung-Pyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.122-127
    • /
    • 2003
  • This paper presents a new time-stepping 3-D analysis method coupled with an external circuit with motion equation for dynamic transient analysis of induction machines. In this method, the magneto-motive force (MMF) generated by induced current is modeled as a passive source in the magnetic equivalent network. So, by using only scalar potential at each node, the method is able to analyze induction machines with faster computation time and less memory requirement than conventional numerical methods. Also, this method is capable of modeling the movement of the mover without the need for re-meshing and analyzing the time harmonics for dynamic characteristics. From comparisons between the results of the analysis and the experiments, it is verified that the proposed method is capable of estimating the torque, harmonic field, etc. as a function of time with superior accuracy.

Social Network Analysis for the Effective Adoption of Recommender Systems (추천시스템의 효과적 도입을 위한 소셜네트워크 분석)

  • Park, Jong-Hak;Cho, Yoon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.305-316
    • /
    • 2011
  • Recommender system is the system which, by using automated information filtering technology, recommends products or services to the customers who are likely to be interested in. Those systems are widely used in many different Web retailers such as Amazon.com, Netfix.com, and CDNow.com. Various recommender systems have been developed. Among them, Collaborative Filtering (CF) has been known as the most successful and commonly used approach. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. However, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting in advance whether the performance of CF recommender system is acceptable or not is practically important and needed. In this study, we propose a decision making guideline which helps decide whether CF is adoptable for a given application with certain transaction data characteristics. Several previous studies reported that sparsity, gray sheep, cold-start, coverage, and serendipity could affect the performance of CF, but the theoretical and empirical justification of such factors is lacking. Recently there are many studies paying attention to Social Network Analysis (SNA) as a method to analyze social relationships among people. SNA is a method to measure and visualize the linkage structure and status focusing on interaction among objects within communication group. CF analyzes the similarity among previous ratings or purchases of each customer, finds the relationships among the customers who have similarities, and then uses the relationships for recommendations. Thus CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. Under the assumption that SNA could facilitate an exploration of the topological properties of the network structure that are implicit in transaction data for CF recommendations, we focus on density, clustering coefficient, and centralization which are ones of the most commonly used measures to capture topological properties of the social network structure. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. We explore how these SNA measures affect the performance of CF performance and how they interact to each other. Our experiments used sales transaction data from H department store, one of the well?known department stores in Korea. Total 396 data set were sampled to construct various types of social networks. The dependant variable measuring process consists of three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used UCINET 6.0 for SNA. The experiments conducted the 3-way ANOVA which employs three SNA measures as dependant variables, and the recommendation accuracy measured by F1-measure as an independent variable. The experiments report that 1) each of three SNA measures affects the recommendation accuracy, 2) the density's effect to the performance overrides those of clustering coefficient and centralization (i.e., CF adoption is not a good decision if the density is low), and 3) however though the density is low, the performance of CF is comparatively good when the clustering coefficient is low. We expect that these experiment results help firms decide whether CF recommender system is adoptable for their business domain with certain transaction data characteristics.

Using Transaction Logs to Better Understand User Search Session Patterns in an Image-based Digital Library (이미지 기반 디지털 도서관에서 이용자 검색 패턴의 효과적 이해를 위한 트랜잭션 로그 데이터 분석)

  • Han, Hye-Jung;Joo, Soohyung;Wolfram, Dietmar
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.25 no.1
    • /
    • pp.19-37
    • /
    • 2014
  • Server transaction logs containing complete click-through data from a digital library of primarily image-based documents were analyzed to better understand user search session behavior. One month of data was analyzed using descriptive statistics and network analysis methods. The findings reveal iterative search behaviors centered on result views and evaluation and topical areas of focus for the search sessions. The study is novel in its combined analytical techniques and use of click-through data for image collections.

Correlation Analysis between Internal Transactions and Efficiency of Chaebol Affiliates Using Social Network Analysis (사회연결망분석을 이용한 대기업집단 내부거래와 효율성의 상관분석)

  • Na, Gi Joo;Cho, Nam Wook
    • Journal of Information Technology Services
    • /
    • v.14 no.3
    • /
    • pp.49-65
    • /
    • 2015
  • As South Korean large business groups, also known as Chaebol, have broadened their influence in the domestic economy, it is important to analyze the influence of internal transactions among Chaebol affiliates on their performance. In this paper, relationship between internal transactions and efficiency of Chaebol affiliates has been analyzed. Top five Chaebol groups in South Korea are selected; they include Samsung, Hyundai Motors, LG, SK, and Lotte group. Based on internal transactions among affiliates, social networks are constructed for each Chaebol group to analyze centrality, network structures and cliques. Data Envelopment Analysis (DEA) was conducted to examine the efficiency of the Chaebol affiliates. Then, correlations between the degree centrality and the efficiency of Chaebol affiliates were analyzed, and the network structures of Chaebol groups are presented. The result shows that positive correlations between degree centrality and efficiency are observed among four Chaebol Groups. This paper shows that the Social Network Analysis (SNA) techniques can be used in the empirical research for the analysis of internal transactions of Chaebol groups.

Performance Analysis of Consensus Algorithm considering NFT Transaction Stability (NFT 거래 안정성을 고려한 합의알고리즘 성능분석)

  • Min, Youn-A;Lim, Dong-Kyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.151-157
    • /
    • 2022
  • In this paper, the performance of various blockchain consensus algorithms was compared and analyzed as a method to increase the transaction cost and processing time during NFT transactions and to increase the transaction stability requirements that occur during smart contract execution. Network reliability and TPS are evaluation items for performance comparison. TPS and the stability of the Consensus algorithm are presented for three evaluation items. In order to establish a standardized expression for each evaluation item, the reliability of the node and the success rate of the smart contract were considered as variables in the calculation formula, and the performance of the consensus algorithm of the three groups, PoW/PoS, Paxos/Raft and PBFT, was compared under the same conditions. / analyzed. As a result of the performance evaluation, the network reliability of the three groups was similar, and in the case of the remaining two evaluation items, it was analyzed that the PBFT consensus algorithm was superior to other consensus algorithms. Through the performance evaluation equations and results of this study, it was analyzed that when the PBFT consensus processing process is reflected in the consensus process, the network reliability can be guaranteed and the stability and economic efficiency of the consensus algorithm can be increased.