• 제목/요약/키워드: Analysis of the Dynamic Model

검색결과 5,161건 처리시간 0.035초

곡선주행 실시간 주행성 분석을 위한 스키드 차량의 동역학 모델링 (A Dynamic Modeling of 6×6 Skid Type Vehicle for Real Time Traversability Analysis over Curved Driving Path)

  • 주상현;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제18권4호
    • /
    • pp.359-364
    • /
    • 2012
  • Real-Time Traversability should be analyzed from the equiped sensors' data in real time for autonomous outdoor navigation. However, it is difficult to find out such traversability that considers the terrain roughness and the vehicle dynamics especially in case of skid type vehicle. The traversability based on real time dynamic analysis was proposed to solve such problem but in navigation with strait driving path. To adapt the method into the navigation with curved driving path, a path following controller should be incorporated into the dynamic model even though it cause the real time problem. In this paper, a dynamic model is proposed to solve the real time problem in the traversability analysis based on real time dynamic simualtion. The dynamic model contains the control dummy which is connected to the vehicle body with a universal joint to follow the curved path without controller. Simulation and experimental results on $6{\times}6$ articulated unmanned ground vehicle demonstrate the method's effectiveness and applicability into the traversability analysis on terrain with bumps.

Nonlinear analysis of thin shallow arches subject to snap-through using truss models

  • Xenidis, H.;Morfidis, K.;Papadopoulos, P.G.
    • Structural Engineering and Mechanics
    • /
    • 제45권4호
    • /
    • pp.521-542
    • /
    • 2013
  • In this study a truss model is used for the geometrically nonlinear static and dynamic analysis of a thin shallow arch subject to snap-through. Thanks to the very simple geometry of a truss, the equilibrium conditions can be easily written and the global stiffness matrix can be easily updated with respect to the deformed structure, within each step of the analysis. A very coarse discretization is applied; so, in a very simple way, the high frequency modes are suppressed from the beginning and there is no need to develop a complicated reduced-order technique. Two short computer programs have been developed for the geometrically nonlinear static analysis by displacement control of a plane truss model of a structure as well as for its dynamic analysis by the step-by-step time integration algorithm of trapezoidal rule, combined with a predictor-corrector technique. These two short, fully documented computer programs are applied on the geometrically nonlinear static and dynamic analysis of a specific thin shallow arch subject to snap-through.

Application of Dynamic Reliability Analysis Method to the CANDU Pressurizer System

  • Lee, Sook-Hyung;Oh, Se-Ki
    • Nuclear Engineering and Technology
    • /
    • 제30권3호
    • /
    • pp.194-201
    • /
    • 1998
  • DYLAM (Dynamic Logical Analytical Methodology) and its related methodologies are reviewed and found to have many favorable characteristics. Previous studies have shown that the DYLAM methodology represents an appropriate tool to study dynamic analysis. A hybrid model which is a synthesis of the DYLAM model, a system thermodynamic simulation model and a neural network predicative model, is implemented and used to analyze dynamically the CANDU pressurizer system. This study demonstrates that the hybrid model for system reliability analyses is effective.

  • PDF

ANALYZING DYNAMIC FAULT TREES DERIVED FROM MODEL-BASED SYSTEM ARCHITECTURES

  • Dehlinger, Josh;Dugan, Joanne Bechta
    • Nuclear Engineering and Technology
    • /
    • 제40권5호
    • /
    • pp.365-374
    • /
    • 2008
  • Dependability-critical systems, such as digital instrumentation and control systems in nuclear power plants, necessitate engineering techniques and tools to provide assurances of their safety and reliability. Determining system reliability at the architectural design phase is important since it may guide design decisions and provide crucial information for trade-off analysis and estimating system cost. Despite this, reliability and system engineering remain separate disciplines and engineering processes by which the dependability analysis results may not represent the designed system. In this article we provide an overview and application of our approach to build architecture-based, dynamic system models for dependability-critical systems and then automatically generate dynamic fault trees (DFT) for comprehensive, tool-supported reliability analysis. Specifically, we use the Architectural Analysis and Design Language (AADL) to model the structural, behavioral and failure aspects of the system in a composite architecture model. From the AADL model, we seek to derive the DFT(s) and use Galileo's automated reliability analyses to estimate system reliability. This approach alleviates the dependability engineering - systems engineering knowledge expertise gap, integrates the dependability and system engineering design and development processes and enables a more formal, automated and consistent DFT construction. We illustrate this work using an example based on a dynamic digital feed-water control system for a nuclear reactor.

스틱모델을 이용한 외부연료탱크 및 파일런 동특성 해석 (Dynamic Analysis of External Fuel Tank and Pylon Using Stick Model)

  • 김현기;김성찬;박성환;최현경;홍승호;하병근
    • 항공우주시스템공학회지
    • /
    • 제14권1호
    • /
    • pp.21-27
    • /
    • 2020
  • 항공기는 임무수행을 위해 다양한 외부 장착물을 장착해야 한다. 이러한 외부 장착물은 경우에 따라서 구조적 불안정성을 발생시키는 원인이 될 수 있기 때문에 항공기와 외부 장착물 간의 영향성 평가가 필요하다. 이를 위해 외부 장착물을 반영한 항공기 동특성 해석을 수행하게 되는데, 항공기 동특성 해석용 유한요소 모델은 최소의 절점과 요소를 사용하면서도 해당 구성품의 동특성을 최대한 정확하게 모사할 수 있어야 한다. 본 연구에서는 MSC Patran/Nastran을 사용하여 외부 연료탱크와 장착 파일런의 동특성 해석용 스틱모델을 구축하였다. 등가 강도 계산을 위해 간단한 빔 이론을 적용하여 각 부품의 스틱모델을 구축하고 상세모델과의 모드 비교를 통해 생성된 스틱모델의 적합성을 확인하였다. 그리고, 외부 연료탱크가 장착된 파일런의 스틱모델 조립체의 모달해석을 수행하여 항공기 동특성 해석을 위해 요구되는 기본 모드들이 잘 추출되는 것을 확인하였다. 최종적으로 상세모델 조립체와 스틱모델 조립체 간 모드들의 오차를 비교하여 구축된 스틱모델 조립체가 항공기 동특성 해석용으로 사용될 수 있음을 확인하였다.

Modelling of RV Ledge Region for Dynamic Analysis of Coupled Reactor Vessel Internals and Core

  • Jhung, Myung J.
    • Nuclear Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.164-172
    • /
    • 1998
  • This paper presents the detailed modelling of reactor vessel ledge region for the dynamic analysis of the coupled internals and core model. The dynamic responses due to earthquake and pipe break are calculated using the input motions of reactor vessel taken from Ulchin nuclear power plant units 3 and 4. Two different representations for detailed and simplified models of the RV ledge region are made. The dynamic responses of the reactor internals components are compared between them. Response characteristics are reported and simplified model is suggested for earthquake and pipe break analysis for the future design of the reactor internals.

  • PDF

기어이의 변동물림강성을 고려한 비틀림진동해석 (Torsional Vibration Analysis of a Spur Gear Pair with the Variable Mesh Stiffness)

  • 류재완;한동철;최상현
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.99-108
    • /
    • 1999
  • A four-degree-of-freedom non-linear model with time varying mesh stiffness has been developed for the dynamic analysis of spur gear trains. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover. In the model, developed several factors such as time varying mesh stiffness and damping, separation of teeth, teeth collision, various gear errors and profile modifications have been considered. Two computer programs are developed to calculate stiffness of a gear pair and transmission error and the dynamic analysis of modeled system using time integration method. Dynamic tooth and mesh forces, dynamic factors are calculated. Numerical examples have been given, which shows the time varying mesh stiffness ha a significant effect upon the dynamic tooth force and torsional vibrations.

  • PDF

동적 유입류 모델을 이용한 회전익기 전진비행 공탄성 해석 (Aeroelastic Analysis of Rotorcraft in Forward Flight Using Dynamic Inflow Model)

  • 이준배;유승재;정민수;이인;김덕관;오세종;이관중
    • 한국항공우주학회지
    • /
    • 제39권4호
    • /
    • pp.297-305
    • /
    • 2011
  • 본 논문에서는 비정상 공기력을 모델링하기위해 Peters-He의 동적유입류모델을 고려한 2차원 준정상 공기력 이론을 적용하여 회전익기 전진비행에 대한 공탄성 해석을 수행하였다. 또한, 공력탄성학적 안정성 해석을 수행하기 위하여, 전진비행 시 주기적인 특성을 갖는 비선형 정적 트림 해를 얻기 위해 동체 평형을 고려한 연계 트림 해석을 통한 완전 유한요소 방정식을 이용하였다. 동적유입류모델의 공력과 구조 특성을 검증하기 위해 유도 유입류와 깃끝에서의 구조변형을 타 수치해석결과와 비교하였다. 또한, 공탄성 안정성을 검증하기 위해 두 모델의 래그 감쇠값을 비교하였다.

Dynamic Substructuring 기법을 이용한 원통형 구조물의 동특성 확인 (Dynamic Characteristics Identification of Cylindrical Structure Using Dynamic Substructuring Method)

  • 최영인;박노철;이상정;박영필;김진성;박찬일;노우진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.106-109
    • /
    • 2014
  • In order to obtain dynamic behaviors of complex structures, it demands large amounts computational cost and time to perform the numerical analysis. The model reduction method helps these problems by dividing the full model into primary and unnecessary parts. In this research, we perform the modal analysis using the dynamic substructuring method, which is one of the model reduction methods, in order to obtain the dynamic characteristics of the cylindrical structures efficiently. To select the master degrees of freedom (dofs), we consider the mode shapes of the cylindrical structures. And then, we identify the validity of the dynamic substructuring method by applying the method to the simple cylinder and core support barrel (CSB) which is one of the reactor internals with the cylindrical shape. The results demonstrate that the dynamic characteristics from the dynamic substructuring method are well matched with the original method.

  • PDF

액츄에이터 시스템의 수학적 모델을 이용한 HDD 공기 베어링 슬라이더의 동특성 해석 (Dynamic Analysis of HDD Air Bearing Sliders using the Mathematical Model of Actuator System)

  • 권순억;박노열;김준오;정태건
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.485-491
    • /
    • 2000
  • We obtain the mathematical model of the hard disk drive actuator system from the system response data of the finite element analysis or experimental results. System response data including the dynamics of the considered system are expressed as the mathematical model. It allows the dynamic analysis of the actuator system without resort to the repetitive finite element modeling work. Even though the dynamic characteristics of the system are affected somewhat by the structural modification and the change of the dynamic properties, we can use the modified size and material properties of the actuator system in the mathematical model to some extent. In this study, we express the mathematical model of the simplified rectangular plate first and then proceed to the actual hard disk drive actuator system.

  • PDF