• Title/Summary/Keyword: Anaerobic performance

Search Result 243, Processing Time 0.033 seconds

Treating Swine Wastewater by Anaerobic Bioreactors (혐기성 생물반응기에 의한 축산폐수의 처리)

  • Lee, Gook-Hee;Kim, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.1
    • /
    • pp.54-60
    • /
    • 1999
  • Three different types of lab-scale anaerobic bioreactors, AF and two-stage ASBF-PR and ASBF-SP, were evaluated in treating swine wastewater by operating at $1{\sim}2$ days of hydraulic retention time with increasing organic loading rate upto 6.3 $kg-COD/m^3{\cdot}d$ at $35^{\circ}C$. Seeding the anaerobic bioreactors with waste anaerobic digester sludge from a municipal wastewater treatment plant was effective and a 40-day acclimation period was required for steady-state operation. Three anaerobic bioreactors were effective in treating swine wastewater with COD removal efficiency of $66.4{\sim}84.9$% and biogas production rate of $0.333{\sim}0.796m^3/kg-COD_{removed}{\cdot}d$. Increases of organic loading rate by increasing influent COD concentration and/or decreasing hydraulic retention time caused decreases in COD removal efficiency and increases in biogas production rate. At relatively high organic loading rate employed in this study, the treatment efficiency of AF and ASBF-PR were similar but superior than that of ASBF-SP, indicating that porosity and pore size of the media packed in the bioreactors are more important factors contributing the performance of to bioreactors than specific surface area of the media. TKN in swine wastewater must be removed prior to the anaerobic processes when anaerobic process is considered as a major treatment process since influent TKN concentration of $1,540{\sim}1,870mg/L$ to the bioreactors adversely affect the activity of methanogenic bacteria, resulting in decreases of treatment efficiency and biogas production rate by 50%.

  • PDF

Thermophilic Sewage Sludge Digestion by Anaerobic Sequencing Batch Reactor (고온 협기성 연속회분식 공정에 의한 도시하수슬러지 소화)

  • 허준무;박종안;이종화;손부순;장봉기
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.130-138
    • /
    • 1999
  • The feasibility of municipal sewage sludge digestion was investigated by using thermophilic anaerobic sequencing batch reactor(ASBR). One-day settle time was enough for the high performance of solid-liquid separation. The conversion of semi-continuous mode to sequencing batch mode is easily achieved without any adverse effects, although the large amount of sludge equal to the volume ratio of 0.3~06 to reactor volume was added in the feed step of the start-up. The ASBRs had higher conversion capability of organics to biogas than the control reactor. Gas yields of the ASBRs were increased by the average of 50% over the control reactor across a range of hydraulic retention time(HRT)s from 10days to 5days. The thermophilic reactors showed higher gas production than mesophilic reactor. Removal efficiencies of organic matter exceeded 80% on the basis of supernatants, except that at the reactor. Solid-liquid separation was essential in the performance of the ASBR, especially, at the lower HFT. The ASBRs were highly efficient in the retention of activated biomass within the reactor. thus compensating for increased equivalent organic loading rate through increased solids retention times followed by the increased solids, while maintaining shorter HRTs.

  • PDF

Effects of the Redox Potential of the Acidogenic Reactor on the Performance of a Two-Stage Methanogenic Reactor

  • Phae, Chae-Gun;Lee, Wan-Kyu;Kim, Byung-Hong;Koh, Jong-Ho;Kim, Sang-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.30-35
    • /
    • 1996
  • Distillery wastewater was used in a thermophilic laboratory-scale two stage anaerobic digester to test the effects of the redox potential of the first acidogenic reactor on the performance of the system. The digester consisted of first a acidogenic reactor and the an upflow anaerobic sludge blanket (UASB) reactor. The digestor was operated at a hydraulic retention time (HRT) of 48 h. Under these conditions, about 90% of the chemical oxygen demand as measured by the chromate method ($COD_{cr}$) was removed with a gas production yield of 0.4 l/g-COD removed. The redox potential of the acidogenic reactor was increased when the reactor was purged with nitrogen gas or agitation speed was increased. The increase in reduction potential was accompanied by an increase in acetate production and a decrease in butyrate formation. A similar trend was observed when a small amount of air was introduced into the acidogenic reactor. It is believed that the hydrogen partial pressure in the acidogenic reactor was decreased by the above mentioned treatments. The possible failure of anaerobic digestion processes due to over-loading could be avoided by the above mentioned treatments.

  • PDF

Conversion of Organic Carbon in Food Processing Wastewater to Photosynthetic Biomass in Photo-bioreactors Using Different Light Sources

  • Suwan, Duangkamon;Chitapornpan, Sukhuma;Honda, Ryo;Chiemchaisri, Wilai;Chiemchaisri, Chart
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.293-298
    • /
    • 2014
  • An anaerobic photosynthetic treatment process utilizing purple non-sulfur photosynthetic bacteria (PNSB) was applied to the recovery of organic carbon from food processing wastewater. PNSB cells, by-product from the treatment, have high nutrition such as proteins and vitamins which are a good alternative for fish feed. Effects of light source on performance of anaerobic photosynthetic process were investigated in this study. Two bench-scale photo-bioreactors were lighted with infrared light emitting diodes (LEDs) and tungsten lamps covered with infrared transmitting filter, respectively, aiming to supply infrared light for photosynthetic bacteria growth. The photo-bioreactors were operated to treat noodle-processing wastewater for 323 days. Hydraulic retention time (HRT) was set as 6 days. Organic removals in the photo-bioreactor lighted with infrared LEDs (91%-95%) was found higher than those in photo-bioreactor with tungsten lamps with filter (79%-83%). Biomass production in a 150 L bench-scale photo-bioreactor was comparable to a 8 L small-scale photo-bioreactor in previous study, due to improvement of light supply efficiency. Application of infrared LEDs could achieve higher treatment performance with advantages in energy efficiency and wavelength specifity.

Effects of Exercise Intensity on Hand Steadiness (운동 강도가 손 안정성에 미치는 영향)

  • Han, Seung Jo;Kim, Sun-Uk;Koo, Kyo Chan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • This study is aimed to investigate the association between anaerobic-aerobic exercise intensity and hand steadiness. Hand steadiness is the decisive contributor to affecting the job performance just as in the rifle shooting and archery in sports and the microscope-related jobs requiring hand steadiness in industries. In anaerobic exercise condition hand steadiness is measured through hand steadiness tester having 9 different diameter holes after each subject exerts 25%, 50%, 75%, and 100% of maximum back strength. In aerobic exercise occasion it is evaluated at each time heart rate reaches 115%, 130%, and 145% of reference heart rate measured in no task condition after they do jumping jack. The results indicate that an increased intensity in both types of exercise reduces hand steadiness, but hand steadiness at 25% of maximum back strength and 115% of reference heart rate is rather greater than at no exercise. Just as the relation between cognitive stress and job performance has upside-down U form, so does the association of physical loading to hand steadiness, which means that a little exercise tends to improve hand steadiness in comparison with no exercise.

Evaluation of continuous cultivation of anaerobic ammonium oxidation bacteria immobilized on synthetic media and granular form (입상형태와 합성담체에 고정화된 혐기성 암모늄 산화균의 연속배양 특성 평가)

  • Kim, Jiyoung;Yun, Wonsang;Jung, Jinyoung;Choi, Daehee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.2
    • /
    • pp.135-142
    • /
    • 2021
  • The activity of anaerobic ammonium oxidation (ANAMMOX) immobilized in synthetic media (Poly Ethylene Glycol, PEG) and granular form was evaluated comparatively to investigate the effect of influent nitrogen concentration and exposure of oxygen. In ANAMMOX granule reactor, when concentration of influent total nitrogen increased to 500mg/L, removal efficiency of ammonium, nitrite and nitrate were shown to 90.5±6.5, 96.6±4.9, and 93.2±6.1%, respectively. In the case of the PEG gel, it showed lower nitrogen removal performance, resulting in that the removal efficiency of ammonium, nitrite and nitrate were shown to 83.3±13.0, 96.4±6.1, and 90.3±7.5%, respectively. In second step, when exposed to oxygen, the nitrogen removal performance in the ANAMMOX granule reactor also remained stable, but the activity of PEG gel ANAMMOX was found to be inhibited. Consequently, the PEG gel ANAMMOX was a higher sensitivity than that of granular ANAMMOX with two variables applied in this study.

Operational and Performance parameters of Anaerobic Digestion of Municipal Solid Waste (도시쓰레기 혐기성소화 운용 및 성능 지표)

  • Chung, Jae-Chun;Park, Chan-Hyuk;Son, Sung-Myung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.4
    • /
    • pp.86-95
    • /
    • 2002
  • Anaerobic digestion of municipal solid waste(MSW) is recently getting attention due to energy generation and abatement of global warming. MSW has high solid content and low nitrogen content. Its major component is cellulose and hemicellulose. The conversion rate of organic portion of MSW to methane is approximately 50%, representing $0.2m^3/kg$ VS. Long hydraulic retention time is required for high solid content and inoculum should be mixed with the feed. When MSW is digested anaerobically, maximum limit of C/N ratio is 25 and the optimum concentration of $NH_3-N$ is 700mg/L. lime and sodium bicarbonate are used to adjust pH. Excess addition of sodium bicarbonate above 3,500mg/L will cause sodium toxicity. Thermophilic anaerobic digestion is effective in the control of pathogen although its operation and maintenance is difficult. To optimize the anaerobic digestion of MSW, it is necessary to understand the mechanism of microorganims involved in anaerobic digestion.

  • PDF

Performance Enhancement of Anaerobic Treatment of Waste Sludge by Chemical Pretreatment (화학적 전처리를 통한 혐기성 슬러지 처리효율의 향상)

  • 허준무;박종안;손부순
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.16-25
    • /
    • 1998
  • Laboratory-scale experiment using anaerobic fluidized bed reactor was carried out to investigate the prehydrolysis step with caustic soda on the treatment efficiency of anaerobic sludge treatment, since the overall rate-limiting step for the complete anaerobic digestion of sludge was the hydrolysis step by extracellular bacterial enzymes of insoluble polymeric molecules. Reactors received a sludge which had not been pretreated, a 50-50 mixture of pretreated and untreated sludge, and the fully pretreated sludge. Hydraulic retention time of 10, 5, 2.5 days and 1 day were applied with an respective equivalent organic loading rate of 1.17, 2.23, 4.17, 11.24 gCOD/L/d. Reactor with the untreated sludge did not archieve adequate digestion even at the HRT of 5 days, and reactor, which received the 50-50 mixture, operated well at the HRT of 5 days, but began to show signs of unstable digestion at the HRT of 2.5 days. While, reactor, which was fed the hydrolyzed sludge, operated reasonably well at the 2.5 days, but was showing somewhat decrease in removal efficiencies. Results, therefore, have substantiated that the limiting reaction in the anaerobic treatment process is hydrolysis. The soluble COD did not significantly accumulate in the reactor as organic acid form, even when they were highly stressed. It was believed that this resistance to a build-up of organic acids and soluble COD behavior was mainly due to the maintenance of the methane bacteria in the fixed-film system which prevents washout as the organic loading increased. The anaerobic fluidized bed reactor was therefore effective for the digestion of waste activated sludge at short HRT.

  • PDF

A Study on the Practical Operation of a Farm-scale Two-phase Anaerobic Digester for the Treatment of Swine Manure (돼지분뇨 처리를 위한 Farm-scale Two-phase Anaerobic Digester의 실증운영에 관한 연구)

  • 백인규;이상락;안정제;권윤정;맹원재
    • Journal of Animal Environmental Science
    • /
    • v.6 no.2
    • /
    • pp.73-81
    • /
    • 2000
  • A two-phase anaerobic digestion system for the treatment of swine waste was constructed in a commercial hog farm. The digester system was composed of 4 major units; slurry storage pit, acidogenic digester, methanogenic digester and sedimentation pit. A biogas boiler unit was also attached to maintain the digester temperature of 37$^{\circ}C$. Substrate lading was made with 2hr-interval by pumping about 2.1$m^3$ of slurry type swine waste from the slurry pit into the acidogenic digester, which corresponds to hydraulic retention time of 4 days for the acidogenic digester and of 11 days for the methanogenic digester. Digester temperature were well maintained as the set temperature of 37$^{\circ}C$ in the methanogenic digester, while the temperature in the acidogenic digester showed around 34$^{\circ}C$. pH also showed a steady-state results of 7.3 in the acidogenic digester and of 7.6 in the methanogenic digester during the operation period. Average biogas production rate was 0.66$m^3$/$m^3$ digester volume. Reduction rate of total solid and volatile solid were 42.8% and 5.8%, respectively. Total nitrogen and ammonia nitrogen were not reduced during the anaerobic fermentation, however, most of VFAs seemed to be converted to the biogas,. These fermentation performance data may suggest that he newly developed a two-phase anaerobic digester for the swine waste treatment worked so successfully.

  • PDF

Comparison of Solid Waste Stabilization and Methane Emission from Anaerobic and Semi-Aerobic Landfills Operated in Tropical Condition

  • Sutthasil, Noppharit;Chiemchaisri, Chart;Chiemchaisri, Wilai;Wangyao, Komsilp;Towprayoon, Sirintornthep;Endo, Kazuto;Yamada, Masato
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.261-268
    • /
    • 2014
  • Leachate quality and methane emission from pilot-scale lysimeters operated under semi-aerobic and anaerobic conditions were monitored for 650 days. Two semi-aerobic lysimeters were filled with un-compacted and compacted municipal solid wastes whereas two anaerobic lysimeters containing compacted wastes were operated with leachate storage at 50% and 100% of waste height, respectively. Despite having high moisture in wastes and operating under tropical rainfall events, leachate stabilization in semi-aerobic lysimeters took place much faster resulting in BOD reduction by 90% within 60 days, significantly shorter than 180-210 days observed in anaerobic lysimeters. Nitrogen concentration in leachate from semi-aerobic lysimeter could be reduced by 90%. In term of gas emission, semi-aerobic lysimeter with un-compacted wastes had much lower methane emission rate of $2.8g/m^2/day$ compare to anaerobic lysimeters ($62.6g/m^2/day$) through seasonal fluctuation was observed. Nevertheless, semi-aerobic lysimeter with waste compaction has similar performance to anaerobic lysimeter.