• 제목/요약/키워드: Anaerobic codigestion

검색결과 3건 처리시간 0.015초

Anaerobic codigestion of urban solid waste fresh leachate and domestic wastewaters: Biogas production potential and kinetic

  • Moujanni, Abd-essamad;Qarraey, Imane;Ouatmane, Aaziz
    • Environmental Engineering Research
    • /
    • 제24권1호
    • /
    • pp.38-44
    • /
    • 2019
  • The Biochemical Methane Potential (BMP) of fresh leachate and domestic wastewaters codigestion was determined by laboratory Bach Tests at $35^{\circ}C$ over a period of 90 d using a wide range of leachates volumetric ratios from 0% to 100%. To simulate wastewaters plant treatment step, all the ratios were first air stripped for 48 h before anaerobic incubation. The kinetic of biogas production was assessed using modified Gompertz model and exponential equation. The results obtained showed that cumulative biogas production was insignificant in the case of wastewaters monodigestion while the codigestion significantly improves the BMP. Air stripping pretreatment had positive effect on both ammonium concentration and volatiles fatty acids with reduction up to 75% and 42%, respectively. According to the Modified Gompertz model, the optimal anaerobic co-digestion conditions both in terms of maximal biogas potential, start-up period and maximum daily biogas production rate, could be achieved within large leachate volumetric ratios from 25% to 75% with a maximum BMP value of 438.42 mL/g volatile solid at 50% leachate ratio. The positive effect of codigestion was attributed to a dilution effect of chemical oxygen demand and volatile fatty acid concentrations to optimal range that was between 11.7 to $32.3gO_2/L$ and 2.1 to 7.4 g/L, respectively. These results suggested that the treatment of fresh leachate by their dilution and co digestion at wastewaters treatment plants could be a promising alternative for both energetic and treatment purposes.

Methane Production Potential of Food Waste and Food Waste Mixture with Swine Manure in Anaerobic Digestion

  • Islam, Mohammad Nazrul;Park, Keum-Joo;Yoon, Hyung-Sun
    • Journal of Biosystems Engineering
    • /
    • 제37권2호
    • /
    • pp.100-105
    • /
    • 2012
  • Purpose: Methane production potential in aerobic digestion was assessed according to feed to inoculum (F/I) ratio for food waste only, and mixing ratio of two materials for food waste and swine manure to give a basic data for the design of anaerobic digestion system. Methods: Anaerbic digestion test was performed using a lab scale batch reactor at $35^{\circ}C$ for six different feed to inoculum (F/I) ratios (0.50, 0.72, 1.14, 1.50, 2.14 and 3.41), three food waste to swine manure ratios (100:0, 60:40 and 40:60) with two different loading concentrations (10g VS/L and 30g VS/L). Results: For food waste only, the highest biogas yield of 1008 mL/gVS was obtained at 0.50 of F/I. For the co-digestion of food waste and swine manure mixture, the highest biogas yield of 1148 mL/gVS was obtained at a mixing ratio of 40:60 with loading concentration of 10g VS/L. Conclusions: F/I ratio for the food waste only, mixing ratio of food waste and swine manure, and co-substrate loading rate affected the biogas production rate. For the low loading rate, there was not so much difference according to the mixing ratio of food waste and swine manure, but for the high loading rate higher biogas yield was acquired for the co-digestion of food waste and swine manure than for the food waste alone (mixing ratio, 100:0).

하수슬러지와 음식물쓰레기의 혼합소화시 혼합비율과 기질농도에 따른 분해특성 (Degradation characteristics in anaerobic co-digestion of sewage sludge and food waste)

  • 신항식;김현우;한선기;강석태
    • 유기물자원화
    • /
    • 제10권1호
    • /
    • pp.96-101
    • /
    • 2002
  • 본 연구는 최적의 소화환경 하에서 하수슬러지에 순응된 고온 및 중온 식종균을 이용하여 음식물쓰레기와 하수슬러지를 다양한 비율로 섞어 회분식 혼합소화하여 최대 메탄생성 및 메탄생성율(MPR)에 관하여 고찰하였다. 고온과 중온조건에서 모두 음식물쓰레기의 투입분율과 농도의 증가에 따라 BMP수치가 높아지는 경향을 보였으나 40% 이상의 음식물쓰레기 투입은 lag-phase 의 장기화가 예상되었다. 누적메탄생성그래프의 비선형 회귀분석결과 40%의 음식물쓰레기 투입분율에서 가장 높은 메탄생성 속도를 보였으며 50% 이상의 음식물쓰레기 투입은 메탄생성율 증가에 유리하지 못하였다. 고온조건에서의 흔합소화는 기질농도가, 중온조건에서는 기질의 농도와 음식물쓰레기 투입분율 모두가 메탄생성을 좌우하는 중요인자로 판단되었다. 흔합소화의 상승효과는 C/N 비로 대변되는 nutrient balance와 음식물쓰레기의 투입에 의한 전체 혼합기질의 가수분해 동역학적 상수값의 증가 때문으로 사료된다.

  • PDF