• Title/Summary/Keyword: Anaerobic Digester Gas (ADG)

Search Result 3, Processing Time 0.019 seconds

Anaerobic Digester Gas Purification for the Fuel Gas of the Fuel Cell (연료전지 연료가스인 하수처리장 소화가스정제)

  • Lee, Jong-Gyu;Jun, Jae-Ho;Park, Kyu-Ho;Choi, Doo-Sung;Park, Jae-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.2
    • /
    • pp.164-170
    • /
    • 2007
  • The Tancheon wastewater treatment plant(WWTP) in Seoul using anaerobic digestion to reduce the outlet sludge produces anaerobic digester gas which contains 65% $CH_4$ and 35% $CO_2$. The gas purification equipment was installed and operated to use Anaerobic Digester Gas(ADG) as a fuel for molten carbonate fuel cell(MCFC). The processes consist of the desulfurizer and the adsorption tower to remove $H_2S$ and siloxane in the gas. The gas purification equipment removed virtually over 95% of $H_2S$ and over 99% of siloxane. Results has demonstrated that the fuel cell can produce electrical output and hot water with negligible air emissions of CO, NOx and $SO_2$. The site provides the first opportunity in Korea for demonstrating Molten carbonate fuel cell(MCFC) which the digester gas was applied to the fuel gas.

Biogas Purifying for Fuel cell Power Plant (연료전지 발전을 위한 바이오가스정제)

  • Lee, Jong-Gyu;Jun, Jae-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.439-444
    • /
    • 2007
  • Using the anaerobic digester gas as a fuel, fuel cells have the potential to provide significant environmental and economic benefits. A molten carbonate fuel cell power plant was installed in the municipal sewage works of Tancheon in Seoul. The fuel cell unit operates on anaerobic digester gas and provides power and heat for the sewage works. This is the first project of its kind in Korea. This article outlines the experiences of gas purification process with planning, installation and operation. The engineering and installation phase is described regarding to the special features of digester gas, for example impurities in gas composition. Such impurities would be harmful to fuel cells. Operational results from the field test with a gas purification process plant are presented in this paper.

Economic Feasibility Study for Molten Carbonate Fuel Cells Fed with Biogas

  • Song, Shin-Ae;Han, Jong-Hee;Yoon, Sung-Pil;Nam, Suk-Woo;Oh, In-Hwan;Choi, Dae-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.102-111
    • /
    • 2010
  • Molten carbonate fuel cell (MCFC) power plants are one of most attractive electricity generation systems for the use of biogas to generate high-efficiency ultra-clean power. However, MCFCs are considerably more expensive than comparable conventional electricity generation systems. The commercialization of MCFCs has been delayed more than expected. After being effective in the Kyoto protocol and considerably increasing the fossil price, the attention focused on $CO_2$ regression and renewable energy sources has increased dramatically. In particular, the commercialization and application of MCFC systems fed with biogas have been revived because of the characteristics of $CO_2$ collection and fuel variety of MCFCs. Better economic results of MCFC systems fed with biogas are expected because biogas is a relatively inexpensive fuel compared to liquefied natural gas (LNG). However, the pretreatment cost is added when using anaerobic digester gas (ADG), one of the biogases, as a fuel of MCFC systems because it contains high $H_2S$ and other contaminants, which are harmful sources to the MCFC stack in ADG. Thus, an accurate economic analysis and comparison between MCFCs fed with biogas and LNG are very necessary before the installation of an MCFC system fed with biogas in a plant. In this paper, the economic analysis of an MCFC fed with ADG was carried out for various conditions of electricity and fuel price and compared with the case of an MCFC fed with LNG.