• Title/Summary/Keyword: Anabatic Flow

Search Result 2, Processing Time 0.019 seconds

Numerical Simulation of the Flow Patterns with Sloping Forest Canopies (경사진 산림지형에서의 자연유동에 대한 수치해석)

  • Yoon, Hyun-Gi;Stock, David E.;Yoo, Ki-Soo;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.173-180
    • /
    • 2008
  • Diurnal variation of the flow over a forest canopy on a mountain slope is simulated numerically. In the daytime, the earth surface is heated by the solar radiation and the flow goes up the mountain due to the buoyancy force, and during the night, the air is drained downward along the slope owing to the cooling of the surface by radiation. In this flow process the forest canopy that consists of leaf region and the trunk region plays a dominant role as a momentum sink to the flow, thus the modeling of the leaf area region and trunk region is critical to the successful flow simulation. In the present study, a field measurement in an experimental forest in the State of Oregon in the United States is numerically analyzed. The resistance to the flow in the leaf region is directly related to the leaf area density (LAD), and the trunk is modeled as a cylinder.

The Analysis of Atmospheric Flow Field and Air Quality According to the High Level Ozone Case on Gwangyang Bay (광양만 권역에서의 고농도 오존 사례에 대한 기상 및 대기질 분석)

  • Choi, Hyun-Jung;Lee, Hwa-Woon;Leem, Heon-Ho;Song, Jae-Hwal
    • Journal of Environmental Science International
    • /
    • v.17 no.7
    • /
    • pp.743-753
    • /
    • 2008
  • Gwangyang Bay is often severely confronted by photochemical pollutants due to its location and dense emissions. It is located in a basin on the south coast of the Korean peninsula and is crossed by a remarkable cluster of hills and mountains of a small horizontal scale that forms a channel. Clearly, the air flow field has a great influence on the dispersion of air pollutants. The characteristics of the wind flow patterns have an important effect on the dispersion of pollutants emitted. In these situations, the distribution of the ozone concentration is extremely complicated because of the superposition of circulations of the air flow fields, especially in complex coastal region. In this study, we examined the distribution of the high level ozone on Gwangyang Bay particularly during the episode day (for 5 years). Among these days, A high level ozone was induced by the development of a sea/land breeze local circulation system, as well as by an anabatic/catabatic flow from the mountains and valley with weakening of the synoptic wind. High level ozone distribution pattern(6 types) on Gwangyang bay is analyzed and the comparison of each pattern reveals substantial localized differences in intensity and distribution of ozone concentration from the site coherence and UPA analysis of ozone concentration. The observed VOC concentration had much difference in concentrations and daily variations between Jungdong and Samil.