• Title/Summary/Keyword: An experiment to measure gas concentration

Search Result 14, Processing Time 0.02 seconds

On-Road Investigation of PM Emissions of Passenger Vehicles Fuelled with Diesel and Gasoline Using Mobile Emission Laboratory (이동형 배출가스 측정시스템(MEL)을 이용한 디젤 및 가솔린 차량에서 배출되는 입자상 물질 평가)

  • Lee, Seok-Hwan;Kim, Hong-Suk;Park, Jun-Hyuk;Woo, Se-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.737-744
    • /
    • 2012
  • A mobile emission laboratory (MEL) was designed to measure the amount of traffic pollutants, with high temporal and spatial resolution under real conditions. Equipment for the gas-phase measurements of CO, NOx, $CO_2$, and THC and for the measurement of the number, concentration, and size distribution of fine and ultra-fine particles by an FMPS and CPC was placed in a minivan. The exhausts of different types of vehicles can be sampled by an MEL. This paper describes the technical details of the MEL and presents data from the experiment in which a car chases passenger vehicles fuelled by diesel and gasoline. The particle number concentration in the exhaust of the diesel vehicle was higher than that of the gasoline vehicle. However, the diesel vehicle with a DPF emitted fewer particles than the vehicle equipped with a gasoline direct injection engine, with particle diameters over 50 nm.

An Experimental Study on the Effect of Hydrogen Peroxide in the Treatment of Carbon Monoxide Poisoning (일산화탄소중독(一酸化炭素中毒)의 약물치료효과에 관(關)한 실험적(實驗的) 연구(硏究) -과산화수소(過酸化水素) 관장법(灌腸法)을 중심(中心)으로-)

  • Choi, D.W.;Yoo, K.Y.;Park, H.B.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.13 no.1
    • /
    • pp.13-18
    • /
    • 1980
  • The ultimate goal of treatment of carton monoxide poisoning is to promote dissociation of carboxyhemoglobin and to maintain arterial $PO_2$ above 50mmHg throughout the course of treatment to protect vital organs from damage caused by hypoxia. The hyperbaric chamber designed and manufactured for this purpose has obviousely made an enormous contribution and yet has several handicaps to be overcome by any means. These handicaps are: the financial impact to purchase the chamber (especially in a small, remote community), an extra manpower requirement to operate the device, limitation in the capacity of the chamber (one man type), and the possible hazard of oxygen intoxication and dysbarism. The primary objective of this study is to develope a new therapeutic measure as an alternative to the hyperbaric chamber when it is not available or contraindicated. The effect of intestinal perfusion with hydrogen peroxide has been studied by many investigators and was known to be an excellent way of extrapulmonary oxygen supply. the advantage of this method will include; 1) much more amount of oxygen is delivered to the tissue than one would expect from 100% saturation with oxygen at 1 ata, 2) the procedure is simple and most economical, 3) neither sophisticated equipment nor extra manpower is required. As a study preliminary to the clinical application, authors conducted a series of experiment to observe the effect of hydrogen peroxide enema on dissociation of carboxyhemoglobin in intoxicated rabbit blood. Using an animal gas chamber, 20 rabbits were exposed to CO gas of 6,000 ppm for 60 minutes. Ten rabbits of control group were given 10cc of warmed normal saline solution by reactal perfusion and for the other 10 of the experimental group, the same amount of 1% $H_{2}O_{2}$ solution was given by the same way. Two blood specimens were drawn from each rabbit: the first one immediately following the exposure and the second one after rectal perfusion, about 30 minutes after the first sampling. The result was as follows; 1) The decrease in carboxyhemoglobin concentration during the first 30 minutes in the control and experimental group were $18.18{\pm}4.49%\;and\;23.03{\pm}4.13%$ respectively shelving the significant difference (p<0.05) between the two groups. 2) Hemoglobin and hematocrit value showed no significant difference between two groups and not altered significantly by intestinal perfusion with $H_{2}O_{2}$.

  • PDF

An Experimental Study for the Design of Household-Storage Facilities (부엌 수납장 설계 기준 설정을 위한 기초적 연구)

  • 최재순
    • Journal of the Korean Home Economics Association
    • /
    • v.20 no.4
    • /
    • pp.155-168
    • /
    • 1982
  • What is attempted here is to find out an optimum method for the design of physical environments that could save human energy expenditures and safely perform household duties. There are, if any, very little amount of research done in this area. This is particulary so when the work relates to the designing of household storage facilities in the light of the energy metabolism of human body. The first step to this study, therefore, is to find out the ways by which we can determine the energy metabolism of human body accurately. To measure the volume and the concentration of human respiration continuously and automatically, a new apparatus is selected here. This includes the recording system with the Wright Respirometer and the Expired Gas Analyzer as well as the computer system to multiply volume by concentration of human respiration and to integrate them for a given time. Then, the author experimented on the reliability of this apparatus and came to the conclusion that this apparatus satisfied our need to research the energy metabolism of human body. Next, the general plan and procedures to experiment with this apparatus have been determined as follows: 1) subjects are three young and sound females. Their physical characteristics are shown in Table 1 and most approximates the standard characteristics of Japanese females, 2) height of open shelves is selected in such away as to correspond to the respective height of each subject(see Table 2), 3) utensils to be stored are box shaped object, which weight is 0.5kg, 1.0kg, 2.0kg or 3.0kg, 4) working motions are given while one or two hands as to place utensil on each shelf from the standard working board, 85 cm in height and then to place back it on the board from the shelf and repeated in constant velocity as 10 times per a minute, 5) each posture of motion is chosen by each subject in free, 6) procedures of measurement of human energy metabolism ard shown at(6), 1, Section 3 as specific methods for using this apparatus. Findings of this study are as follows: 1. Human energy expenditures for storing utensils on shelves by each subject are shown in quantity more accurately than in any other studies, under varying conditions about height of shelves, load of utensils and working motion with one hand and two hands (see Fig. 8~13 and Table 3). 2. Experimental formulae of human energy expenditure for that work are shown as formula (8), (9) and (10), to generalize results of 1. and to apply those for working motion under given conditions. 3. As results of analysis on gained data, we are able to show the standard model of human energy expenditures for storing untensils on shelves by the standard Japanese female (see Table 7 and Fig. 14).

  • PDF

A Study on Anaerobic Treatment and Energy Recovery Technology of Food Waste by Using Hybrid Anaerobic Reactor (Hybrid Anaerobic Reactor를 이용한 음식물쓰레기의 혐기성처리 및 에너지 회수에 관한 연구)

  • Yoon Young-Bong;Park Jin-Young;Ju Jin-Young;Kim Myung-Ho
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.1 s.55
    • /
    • pp.64-75
    • /
    • 2005
  • The total production of food waste was about 11,398ton/day('03) in Korea. Also, food waste was treated by landfill, incineration, reuse and anaerobic digestion. The method of food waste treatment depended primarily on landfill. However, the method of landfill causing social problems was prevented to treat food waste in the first of January 2005.12) Thus, anaerobic digestion is an important method to treat food waste because of possibility of energy recovery as methane gas. In this study, the possibility of food waste treatment containing high organic material and low pH in the one stage anaerobic reactor to save cost and time and energy recovery using $CH_{4}$ gas by the hybrid anaerobic reactor (HAR) was measured. The HAR was designed by combing the merits of the anaerobic filter (AF) to minimize the microorganism shock when food waste of very low pH was injected and up-flow anaerobic sludge blanket (UASB) to prevent from plugging and channeling phenomena by large suspended solids when semi solids were injected. Granule was packed in the section of HAR. The purpose of the BMP experiment was to measure the amount of methane generated when organic material was resolved under anaerobic conditions, to grasp bio resolution of organic material. Total accumulated methane production per VS amount was $0.471(m^{3}/\cal{kg}\;VS)$. So, the value was about $81.2\%$ of theoretical methane production which was $0.58(m^{3}/\cal{kg}\;VS)$ by elementary analysis and organic matter removal velocity (K) was $0.18(d^{-1})$. From these results, food waste was treated by anaerobic treatment. From this study, $CH_{4}$ generation from food waste (11,398 ton/day) could be estimated. By using an energy conversion factor of Braun's study, $5.97KWh/m^{3}\;CH4,\;60\%\;of\;CH_{4}$ gas generation, the amount of total energy producing food waste is to 6,727MWh/day. It could be confirmed that energy recovery using $CH_{4}$ gas was possible. Above these results, food waste containing organic matters of high concentration could be treated in HRT 30 days under an anaerobic condition, using the hybrid anaerobic reactor and reuse of $CH_{4}$ gas was possible.