• Title/Summary/Keyword: Amyloid precursor protein

Search Result 113, Processing Time 0.023 seconds

Effect of Obesity and Diabetes on Alzheimer's APP Gene Expression in Mouse Adipose Tissues (비만 및 당뇨가 생쥐 지방조직에서의 Alzheimer's APP 유전자 발현에 미치는 영향)

  • Kim, Jin-Woo;Lee, Yong-Ho
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1012-1018
    • /
    • 2010
  • The aim of this study was to determine whether Alzheimer's amyloid precursor protein (APP) is dysregulated in adipose tissues of C57BL/6 male mice by high-fat diet (HFD) induced obesity, aging, or streptozotocin (STZ)-induced diabetes. APP mRNA expression was examined by quantitative real-time PCR (QPCR) in subcutaneous (SAT) and epididymal adipose tissues (EAT) from mice in 8 different condition groups. By combining conditions of age (16 weeks/26 weeks of age), diet (normal diet (ND)/high-fat diet), and induction of diabetes (non-diabetic/diabetic), 88 mice were divided into 8 different groups. QPCR demonstrated that APP expression in SAT was significantly increased by about two-fold in HFD-induced obese mice compared to both 16 week-old and 26 week-old mice in the ND group (16 weeks p=0.001; 26 weeks p<0.0001), but no changes in EAT was found. Particular effects of aging on APP gene expression were not observed in either adipose tissue depots. Significantly decreased APP expression was found in SAT in STZ-induced diabetic mice fed on ND or HFD at 16 weeks of age (ND p<0.05; HFD p<0.01). Linear regression analysis demonstrated that APP expression levels correlated with body weight in both the non-diabetic group (R=0.657, p<0.0001, n=39) and the diabetic group (R=0.508, p=<0.0001, n=49), but did not correlate with plasma glucose levels, which suggests that decreased APP expression in STZ-induced diabetic mice is most likely due to weight loss rather than hyperglycemia. These data confirm APP dysregulation by weight changes in humans and suggest a possible role linking midlife obesity with the later development of amyloidogenesis in the brain of older patients with Alzheimer's disease.

The Effects of Jangwon-Dan,(JWD) on the Alzheimer's Disease Model Induced by CT-105 and ${\beta}A$ (장원단이 CT105와 ${\beta}A$로 유도(誘導)된 Alzheimer's Disease 병태(病態) 모델에 미치는 영향(影響))

  • Kim, Geon-Jin;Chung, Dae-Kyoo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.17 no.2
    • /
    • pp.91-122
    • /
    • 2006
  • Objective : This research investigates the effect of the Jangwon-Dan,(JWD) on Alzheimer's disease. Method : The effects of the JWN extract on (1) $IL-1{\beta}$, IL-6, and $TNF-{\alpha}$ mRNA of PC-12 cells treated with LPS; (2) amyloid precursor proteins(APP), acetylcholinesterase(AChE), and glial fibrillary acidic protein(GFAP) mRNA, the AChE activity and the APP production of PC-12 cell treated with CT-105; (3) the behavior; (4) expression of $IL-1{\beta}$, $TNF-{\alpha}$, MDA, $IL-1{\beta}$ mRNA, and $TNF-{\alpha}$ mRNA, (5) the infarction area of the hippocampus, and brain tissue injury in Alzheimer's diseased mice induced with ${\beta}A$ were investigated. Result : 1. The JWN extract suppressed the expression of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ mRNA in THP-1 cells treated with LPS. 2. The JWN extract suppressed the expression of APP, AChE, and GFAP mRNA in PC-12 cells treated with CT-105. 3. The JWN extract suppressed the AChE activity, and the production of APP significantly in PC-12 cells treated with CT-105. 4. For the JWN extract group a significant inhibitory effect on the memory deficit was shown for the mice with Alzheimer's disease induced by ${\beta}A$ in the Morris water maze experiment, which measured stop-through latency, and distance movement-through latency. 5. The JWN extract suppressed the over-expression of $IL-1{\beta}$ protein, $TNF-{\alpha}$ protein, MDA, $IL-1{\beta}$ mRNA, $TNF-{\alpha}$ mRNA, and CD68/GFAP, in the mice with Alzheimer's disease induced by ${\beta}A$. 6. The JWN extract reduced the infarction area of hippocampus, and controlled the injury of brain tissue in the mice with Alzheimer's disease induced by ${\beta}A$. Conclusion : These results suggest that the JWN extract may be effective for the prevention and treatment of Alzheimer's disease. Investigation into the clinical use of the JWN extract for Alzheimer's disease is suggested for future research.

  • PDF

The Effects of Hibiscus syriacus(HSS) Extract on the Alzheimer's Disease Model Induced by CT-105 and ${\beta}A$ (목근피(木槿皮)가 CT105와 ${\beta}A$로 유도된 Alzheimer's Disease 병태(病態) 모델에 미치는 영향)

  • Choi, Byung-Man;Jung, In-Chul;Lee, Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.15 no.2
    • /
    • pp.119-139
    • /
    • 2004
  • This research investigates the effect of the Hibiscus syriacus(HSS) on Alzheimer's disease. Specifically, the effects of the HSS extract on (1) $IL-1{\beta}$, IL-6, and $TNF-{\alpha}$ mRNA of PC-12 cells treated with LPS; (2) amyloid precursor proteins(APP), acetylcholinesterase(AChE), and glial fibrillary acidic protein(GFAP) mRNA of PC-12 cells treated with CT-105; (3) the AChE activity and the APP production of PC-12 cell treated with CT-105; (4) the behavior; (4) expression of $IL-1{\beta}$, $TNF-{\alpha}$, $IL-1{\beta}$ mRNA, $TNF-{\alpha}$ mRNA, and reactive oxygen species(ROS); (5) the infarction area of the hippocampus, and brain tissue injury in Alzheimer's diseased mice induced with ${\beta}A$ were investigated. The results were summarized below ; 1. The HSS extract suppressed the expression of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ mRNA in THP-l cells treated with LPS. 2. The HSS extract suppressed the expression of APP, AChE, and GFAP mRNA in PC-12 cells treated with CT-105. 3. The HSS extract suppressed the AChE activity, and the production of APP significantly in PC-12 cells treated with CT-105. 4. For the HSS extract group a significant inhibitory effect on the memory deficit was shown for the mice with Alzheimer's disease induced by ${\beta}A$ in the Morris water maze experiment, which measured stop-through latency, and distance movement-through latency. 5. The HSS extract suppressed the over-expression of $IL-1{\beta}$, $TNF-{\alpha}$, $IL-1{\beta}$ and $TNF-{\alpha}$ mRNA, CD68/GFAP, ROS in the mice with Alzheimer's disease induced by ${\beta}A$. 6. The HSS extract reduced the infarction area of hippocampus, and controlled the injury of brain tissue in the mice with Alzheimer's disease induced by ${\beta}A$. These results suggest that the HSS extract may be effective for the prevention and treatment of Alzheimer's disease. Investigation into the clinical use of the HSS extract for Alzheimer's disease is suggested for future research.

  • PDF