• Title/Summary/Keyword: Amyloid

Search Result 613, Processing Time 0.025 seconds

Serum Amyloid A as an Independent Prognostic Factor for Renal Cell Carcinoma - A Hospital Based Study from the Western Region of Nepal

  • Mittal, Ankush;Poudel, Bibek;Pandeya, Dipendra Raj;Gupta, Satrudhan Pd;Sathian, Brijesh;Yadav, Shambhu Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2253-2255
    • /
    • 2012
  • Objective: The objective of our present study was to assess the role of serum amyloid A (SAA) in stages and prognosis of renal cell carcinoma. Material and Methods: It was a hospital based retrospective study carried out in the Department of Medicine and Biochemistry of Manipal Teaching Hospital, Pokhara, Nepal between $1^{st}$ January 2008 and $31^{st}$ December 2011. The variables collected were SAA, CRP. Approval for the study was obtained from the institutional research ethical committee. Quantitative analysis of human SAA and C-reactive protein (CRP) was performed by radial immune diffusion (RID) assay for all cases. Results: Of the 422 total cases of renal cell carcinoma, 218 patients had normal and 204 abnormal SAA. SAA levels were grossly elevated in T3 stage ($122.3{\pm}SD35.7$) when compared to the mean for the T2 stage ($84.2{\pm}SD24.4$) (p value: 0.0001). Similarly, SAA levels were grossly elevated in M1 stage ($190.0{\pm}SD12.7$) when compared to the M0 stage ($160.9{\pm}SD24.8$) (p: 0.0001). There was no significant association with elevated CRP levels ($209.1{\pm}SD22.7$, normal $199.0{\pm}SD19.5$). Conclusion: The validity of SAA in serum as being of independent prognostic significance in RCC was demonstrated with higher levels in advanced stage disease.

Effect of Sargassum serratifolium Extracts on β-Amyloid Production (β-아밀로이드 단백질 생성에 대한 톱니모자반(Sargassum serratifolium) 추출물의 효과)

  • Choi, Min-Woo;Jung, Cha-Gyun;Kim, Hyeung-Rak;Kim, Jae-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.1
    • /
    • pp.85-91
    • /
    • 2017
  • Alzheimer's disease (AD) is a progressive neurodegenerative disorder of insidious onset that causes gradual loss of memory and cognitive function, and it is the most common form of dementia in the elderly. AD is characterized by neuritic plaques and neurofibrillary tangles in the brain, together with loss of neuronal cells. The major neuropathological hallmark of AD is the accumulation of extracellular neurotoxic ${\beta}-amyloid$ ($A{\beta}$) peptides, such as $A{\beta}1-42$, in the brain. In the present study, we investigated the effect of sargachromenol (SCM), sargaquinoic acid (SQA) and sargahydroquinoic acid (SHQA) isolated from Sargassum serratifoilum ethanol extract (SSE) on $A{\beta}$ production in vitro using APP751-transfected Chinese hamster ovary cells (CHO-751). CHO-751 cells were treated with various concentrations of SSE, SCM, SQA and SHQA, and the level of extracellular $A{\beta}1-42$ was evaluated by enzyme-linked immunosorbent assay. SSE and SHQA reduced the production of $A{\beta}1-42$ in CHO-751 cells. Therefore, SHQA isolated from S. serratifolium has potential as an inhibitor of neurotoxic $A{\beta}$ peptide production.

Perilla frutescens var. japonica and rosmarinic acid improve amyloid-β25-35 induced impairment of cognition and memory function

  • Lee, Ah Young;Hwang, Bo Ra;Lee, Myoung Hee;Lee, Sanghyun;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.10 no.3
    • /
    • pp.274-281
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: The accumulation of amyloid-${\beta}$ ($A{\beta}$) in the brain is a hallmark of Alzheimer's disease (AD) and plays a key role in cognitive dysfunction. Perilla frutescens var. japonica extract (PFE) and its major compound, rosmarinic acid (RA), have shown antioxidant and anti-inflammatory activities. We investigated whether administration of PFE and RA contributes to cognitive improvement in an $A{\beta}_{25-35}$-injected mouse model. MATERIALS/METHODS: Male ICR mice were intracerebroventricularly injected with aggregated $A{\beta}_{25-35}$ to induce AD. $A{\beta}_{25-35}$-injected mice were fed PFE (50 mg/kg/day) or RA (0.25 mg/kg/day) for 14 days and examined for learning and memory ability through the T-maze, object recognition, and Morris water maze test. RESULTS: Our present study demonstrated that PFE and RA administration significantly enhanced cognition function and object discrimination, which were impaired by $A{\beta}_{25-35}$, in the T-maze and object recognition tests, respectively. In addition, oral administration of PFE and RA decreased the time to reach the platform and increased the number of crossings over the removed platform when compared with the $A{\beta}_{25-35}$-induced control group in the Morris water maze test. Furthermore, PFE and RA significantly decreased the levels of nitric oxide (NO) and malondialdehyde (MDA) in the brain, kidney, and liver. In particular, PFE markedly attenuated oxidative stress by inhibiting production of NO and MDA in the $A{\beta}_{25-35}$-injected mouse brain. CONCLUSIONS: These results suggest that PFE and its active compound RA have beneficial effects on cognitive improvement and may help prevent AD induced by $A{\beta}$.

Combination therapy with cilostazol, aripiprazole, and donepezil protects neuronal cells from β-amyloid neurotoxicity through synergistically enhanced SIRT1 expression

  • Heo, Hye Jin;Park, So Youn;Lee, Yi Sle;Shin, Hwa Kyoung;Hong, Ki Whan;Kim, Chi Dae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.4
    • /
    • pp.299-310
    • /
    • 2020
  • Alzheimer's disease (AD) is a multi-faceted neurodegenerative disease. Thus, current therapeutic strategies require multitarget-drug combinations to treat or prevent the disease. At the present time, single drugs have proven to be inadequate in terms of addressing the multifactorial pathology of AD, and multitarget-directed drug design has not been successful. Based on these points of views, it is judged that combinatorial drug therapies that target several pathogenic factors may offer more attractive therapeutic options. Thus, we explored that the combination therapy with lower doses of cilostazol and aripiprazole with add-on donepezil (CAD) might have potential in the pathogenesis of AD. In the present study, we found the superior efficacies of donepezil add-on with combinatorial mixture of cilostazol plus aripiprazole in modulation of expression of AD-relevant genes: Aβ accumulation, GSK-3β, P300, acetylated tau, phosphorylated-tau levels, and activation of α-secretase/ADAM 10 through SIRT1 activation in the N2a Swe cells expressing human APP Swedish mutation (N2a Swe cells). We also assessed that CAD synergistically raised acetylcholine release and choline acetyltransferase (CHAT) expression that were declined by increased β-amyloid level in the activated N2a Swe cells. Consequently, CAD treatment synergistically increased neurite elongation and improved cell viability through activations of PI3K, BDNF, β-catenin and α7-nicotinic cholinergic receptors in neuronal cells in the presence of Aβ1-42. This work endorses the possibility for efficient treatment of AD by supporting the synergistic therapeutic potential of donepezil add-on therapy in combination with lower doses of cilostazol and aripiprazole.

The neuroprotective effects of Nokyongdaebo-tang(Lurongdabutang) treatment in pathological Alzheimer's disease model of neural tissues (Alzheimer's Disease 병태모델에서 녹용대보탕(鹿茸大補湯)의 신경세포 보호효과)

  • Cheong, Myong-Hee;Jung, In-Chul;Lee, Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.20 no.2
    • /
    • pp.1-17
    • /
    • 2009
  • Objectives : Alzheimer's disease(AD) is the most common form of dementia, which is characterized by progressive deterioration of memory and higher cortical functions that ultimately results in total degradation of intellectual and mental activities. Nokyongdaebo-tang(Lurongdabutang) has been usually used for the treatment for the deficiency syndrome dementia and amnesia. This experiment was designed to investigate the effect of the Nokyongdaebo-tang(Lurongdabutang) hot water extract on pathological AD model. Methods : The effects of the Nokyongdaebo-tang(Lurongdabutang) hot water extract on cultured spinal cord cells induced by ${\beta}$-amyloid were investigated. The effects of the Nokyongdaebo-tan(Lurongdabutang) hot water extract on the memory deficit mice induced by scopolamine were investigated. Results : 1. ${\beta}$-amyloid treatment on cultured spinal cord cells increased both GFAP-staining intensity of astrocytes and caspase 3 immunoreactivity on cultured cells. Then, Nokyongdaebo-tang(Lurongdabutang) treatment reduced the labeling intensity for both GFAP and caspase 3 proteins in culture cells. 2. Scopolamine treatment into mice increased levels of GFAP-positive astrocytes and caspase 3-labeled cells of the hippocampal subfields dentate hilar region, CA3 and CA1 area. In vivo administration of Nokyongdaebo-tang(Lurongdabutang) attenuated labeling intensity for those two proteins in the same hippocampal areas. Similar effects were observed by the treatment of galanthamine, an inhibitor of acetylcholinesterase. Conclusions : This experiment shows that the Nokyongdaebo-tang(Lurongdabutang) may play a protective role in damaged neural tissues. Since neuronal damage seen in degenerative brains such as AD are largely unknown, the current data may provide possible insight into therapeutic strategies for AD treatments. Nokyongdaebo-tang(Lurongdabutang) might be effective for the prevention and treatment of AD.

  • PDF

Antidementia Effect of Jangwonhwangagambang Water Extract in APP-induced Drosophila Model (장원환가감방(壯元丸加減方) 전탕액(煎湯液)이 APP로 유도된 형질전환 초파리에서의 항치매 효과)

  • Han, Won-Ju;Kim, Sang-Tae;Lee, Chung-Sik;Park, Bo-Ra;Jung, Eun-Young;Kim, Dae-Hyun;Yun, Jong-Hyun;Kim, Jin-Woo;Kang, Hyung-Won;Lyu, Yeoung-Su;Kim, Tae-Heon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.5
    • /
    • pp.1215-1222
    • /
    • 2008
  • Recent studies indicate that the deposition of ${\beta}$-amyloid ($A{\beta}$) is associated with the pathogenesis of Alzheimer's disease (AD), but the underlying mechanism is not clear yet. To investigate the effects of Jangwonhwangagambang (JWHG) extract on AD pathogenicity, we have generated transgenic Drosophila model in which GMR-APP-GAL4/UAS-GRIM system was designed to overexpress amyloid precursor protein(APP), We examined fly's survival ratio, flight behavior, and morphological patterns of chest and eye. We found that JWHG treatment improved fly's survival ratio by inhibiting apoptosis and flight behavior. APP-GRIM transgenic flies treated with JWHG showed had significantly lower levels of APP deposition in the chest and eye compared to control animals. JWHG treatment further inhibited chest and eye degeneration. These results suggest that JWHG prevents APP-induced neurotoxicity, and thus may be applicable for the development of preventive or therapeutic agents for AD treatment.

Effects Amyloid Beta Peptide on the Inflammatory Response in Neuronal Cells (베타아밀로이드가 신경세포에 미치는 염증 작용 연구)

  • Jang, Seon-A;Koo, Hyun Jung;Kang, Se Chan;Sohn, Eun-Hwa;Namkoong, Seung
    • KSBB Journal
    • /
    • v.28 no.4
    • /
    • pp.230-237
    • /
    • 2013
  • Amyloid ${\beta}$ peptide (A${\beta}$) still best known as a molecule to cause Alzheimer's disease (AD). AD is characterized by the accumulation and deposition of A${\beta}$ within the brain, leading to neuronal cell loss and perturbation of synaptic function by causing free radical formation, inflammation and apoptosis. We investigated the inflammatory action of A${\beta}$ on two types of brain cells, neuronal cells (SH-SY5Y) and neuroglia cells (C6), and its mechanism. We measured the production of NO-iNOS, TNF-${\alpha}$, and ICAM-1 using RT-PCR and Western blot analysis less than the concentration of cytotoxic effects (> 70% survivability). A${\beta}$ had no effect on the production of NO and TNF-${\alpha}$, but significantly increases of iNOS and ICAM-1. Based on this, we suggest that the inflammatory effect of A${\beta}$ results from the action of ICAM-1 in neuronal cells, rather than the release of inflammatory mediators such as NO and TNF-${\alpha}$ in neuroglia cells. In addition, we confirmed whether p53 was related to the action of A${\beta}$ by using SH-SY5Y ($p53^{-/-}$) dominant cells. Neither the expression of p53 nor the cytotoxicity of SH-SY5Y ($p53^{-/-}$) cells were directly affected by A${\beta}$. However, ICAM-1 was not expressed in SH-SY5Y ($p53^{-/-}$) cells. This means that p53- independent pathway exists in the expression of ICAM-1 by A${\beta}$ while p53 plays a role as an on-and-off switch.

Bi-flavonoids are Superior to Mono-flavonoid in Inhibiting Amyloid-${\beta}$ Toxicity and Fibrillogenesis through Accumulating Nontoxic Oligomer-like Structures

  • Merlin Jayalal, L.P.
    • Journal of Integrative Natural Science
    • /
    • v.5 no.2
    • /
    • pp.107-119
    • /
    • 2012
  • Polymerization of monomeric amyloid-${\beta}$ peptides ($A{\beta}$) into soluble oligomers and insoluble fibrils is one of the major pathways triggering the pathogenesis of Alzheimer's disease (AD). Using small molecules to prevent the polymerization of $A{\beta}$ peptides can, therefore, be an effective therapeutic strategy for AD. In this study, we investigated the effects of mono- and bi-flavonoids on $A{\beta}42$ toxicity and fibrillogenesis and found that the bi-flavonoid, taiwaniaflavone (TF) effectively and specifically inhibits $A{\beta}$ toxicity and fibrillogenesis. Compared to TF, the mono-flavonoid apigenin (AP) is less effective and less specific. Our data showed that differential effects of the mono- and bi-flavonoids on $A{\beta}$ fibrillogenesis correlate with their varying cytoprotective efficacies. We also found that other bi-flavonoids, namely 2',8"-biapigenin, amentoflavone, and sumaflavone, can also effectively inhibit $A{\beta}$ toxicity and fibrillogenesis, implying that the participation of two mono-flavonoids in a single bi-flavonoid molecule enhanced their activity. Bi-flavonoids, while strongly inhibited $A{\beta}$ fibrillogenesis, accumulated nontoxic $A{\beta}$ oligomeric structures, suggesting that these are off-pathway-oligomers. Moreover, TF abrogated the toxicity of preformed $A{\beta}$ oligomers and fibrils, indicating that TF and other bi-flavonoids may also reduce the toxicity of toxic $A{\beta}$ species. Altogether, our data clearly show that bi-flavonoids, possibly due to the possession of two $A{\beta}$ binders separated by an appropriate size linker, are likely to be promising therapeutics to suppress $A{\beta}$ toxicity.

Comparison of serum amyloid A protein and C-reactive protein levels as inflammatory markers in periodontitis

  • Ardila, Carlos Martin;Guzman, Isabel Cristina
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.1
    • /
    • pp.14-22
    • /
    • 2015
  • Purpose: The purpose of this study was to compare serum amyloid A (SAA) protein levels with high-sensitive C-reactive protein (hs-CRP) levels as markers of systemic inflammation in patients with chronic periodontitis. The association of serum titers of antibodies to periodontal microbiota and SAA/hs-CRP levels in periodontitis patients was also studied. Methods: A total of 110 individuals were included in this study. Patients were assessed for levels of hs-CRP and SAA. Nonfasting blood samples were collected from participants at the time of clinical examination. The diagnosis of adipose tissue disorders was made according to previously defined criteria. To determine SAA levels, a sandwich enzyme-linked immunosorbent assay was utilized. Paper points were transferred to a sterile tube to obtain a pool of samples for polymerase chain reaction processing and the identification of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Tannerella forsythia. The serum level of IgG1 and IgG2 antibodies to P. gingivalis, A. actinomycetemcomitans, and T. forsythia was also determined. Results: SAA and hs-CRP levels were higher in periodontitis patients than in controls (P<0.05). In bivariate analysis, high levels of hs-CRP (>3 mg/L) and SAA (>10 mg/L) were significantly associated with chronic periodontitis (P=0.004). The Spearman correlation analysis between acute-phase proteins showed that SAA positively correlated with hs-CRP (r=0.218, P=0.02). In the adjusted model, chronic periodontitis was associated with high levels of SAA (odds ratio [OR], 5.5; 95% confidence interval [CI], 1.6-18.2; P=0.005) and elevated hs-CRP levels (OR, 6.1, 95% CI, 1.6-23.6; P=0.008). Increased levels of serum IgG2 antibodies to P. gingivalis were associated with high levels of SAA (OR, 3.6; 95% CI, 1.4-8.5; P=0.005) and high concentrations of hs-CRP (OR, 4.3; 95% CI, 1.9-9.8; P<0.001). Conclusions: SAA and hs-CRP concentrations in patients with chronic periodontitis are comparably elevated. High serum titers of antibodies to P. gingivalis and the presence of periodontal disease are independently related to high SAA and hs-CRP levels.

Molecular Dynamics Simulations on β Amyloid Peptide (25-35) in Aqueous Trifluoroethanol Solution

  • Lee, Sang-Won;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.838-842
    • /
    • 2004
  • Amyloid peptide (A${\beta}$) is the major component of senile plaques found in the brain of patient of Alzheimer's disease. ${\beta}$-amyloid peptide (25-35) (A${\beta}$25-35) is biologically active fragment of A${\beta}$. The three-dimensional structure of A${\beta}$25-35 in aqueous solution with 50% (vol/vol) TFE determined by NMR spectroscopy previously adopts an ${\alpha}$-helical conformation from $Ala^{30}$ to $Met^{35}$. It has been proposed that A${\beta}$(25-35) exhibits pH- and concentration-dependent ${\alpha}-helix{\leftrightarrow}{\beta}$sheet transition. This conformational transition with concomitant peptide aggregation is a possible mechanism of plaque formation. Here, in order to gain more insight into the mechanism of ${\alpha}$-helix formation of A${\beta}$25-35 peptide by TFE, which particularly stabilizes ${\alpha}$-helical conformation, we studied the secondary-structural elements of A${\beta}$25-35 peptide by molecular dynamics simulations. Secondary structural elements determined from NMR spectroscopy in aqueous TFE solution are preserved during the MD simulation. TFE/water mixed solvent has reduced capacity for forming hydrogen bond to the peptide compared to pure water solvent. TFE allows A${\beta}$25-35 to form bifurcated hydrogen bonds to TFE as well as to residues in peptide itself. MD simulation in this study supports the notion that TFE can act as an ${\alpha}$-helical structure forming solvent.