• 제목/요약/키워드: Amplitude Ratio

검색결과 966건 처리시간 0.03초

선형 및 비선형 TLD의 지진응답 제어성능 평가 (Seismic Response Control Performance of Linear and Nonlinear TLD Models)

  • 이상현;우성식;정란
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.519-526
    • /
    • 2006
  • This paper compares the seismic response control performance of linear and non-linear models fer tuned liquid damper (TLD). The existing linear and nonlinear TLD models were used for the numerical analysis of single degree of freedom (SDOF) and multi degree of freedom (MDOF) systems with TLD. The nonlinear model considers the variation of the frequency and damping of the TLD with varying excitation amplitude while the linear one has the invariant parameters. Numerical analysis results from SDOF systems indicate that the nonlinear model shows about 5% better control performance than linear one when the mass ratio is 2% and the optimal parameters for reducing peak responses are dependent on the characteristics of the excitation earthquake loads.

  • PDF

A study of dynamic responses of incorporating damaged materials and structures

  • Zhang, Wohua;Chen, Yunmin;Jin, Yi
    • Structural Engineering and Mechanics
    • /
    • 제10권2호
    • /
    • pp.139-156
    • /
    • 2000
  • This paper concerns the development of a computational model for the damage evolution of engineering materials under dynamic loading. Two models describing the anisotropic damage evolution of a material are presented; the first is based on a power function of the effective equivalent stress and the second on the damage strain energy release rate. The methods for computing the damage accumulated in structural components and their implementation in a finite element programme are presented together with some numerical results. The dynamic response of a damaged structural component and the dynamic behaviour of a damaged material have been studied numerically. This study shows that the frequency spectrum of a damaged structure is down-shifted, while the damping ratio of damaged materials becomes higher, the amplitude of the response significantly increases and the resonance ensuing from the damage growth still occurs in a damaged structure.

Dynamic instability of functionally graded material plates subjected to aero-thermo-mechanical loads

  • Prakash, T.;Ganapathi, M.
    • Structural Engineering and Mechanics
    • /
    • 제20권4호
    • /
    • pp.435-450
    • /
    • 2005
  • Here, the dynamic instability characteristics of aero-thermo-mechanically stressed functionally graded plates are investigated using finite element procedure. Temperature field is assumed to be a uniform distribution over the plate surface and varied in thickness direction only. Material properties are assumed to be temperature dependent and graded in the thickness direction according to simple power law distribution. For the numerical illustrations, silicon nitride/stainless steel is considered as functionally graded material. The aerodynamic pressure is evaluated based on first-order high Mach number approximation to the linear potential flow theory. The boundaries of the instability region are obtained using the principle of Bolotin's method and are conveniently represented in the non-dimensional excitation frequency-load amplitude plane. The variation dynamic instability width is highlighted considering various parameters such as gradient index, temperature, aerodynamic and mechanical loads, thickness and aspect ratios, and boundary condition.

Cyclic load testing and numerical modeling of concrete columns with substandard seismic details

  • Marefat, Mohammad S.;Khanmohammadi, Mohammad;Bahrani, Mohammad K.;Goli, Ali
    • Computers and Concrete
    • /
    • 제2권5호
    • /
    • pp.367-380
    • /
    • 2005
  • Recent earthquakes have shown that many of existing buildings in Iran sustain heavy damage due to defective seismic details. To assess vulnerability of one common type of buildings, which consists of low rise framed concrete structures, three defective and three standard columns have been tested under reversed cyclic load. The substandard specimens suffered in average 37% loss of strength and 45% loss of energy dissipation capacity relative to standard specimens, and this was mainly due to less lateral and longitudinal reinforcement and insufficient sectional dimensions. A relationship has been developed to introduce variation of plastic length under increasing displacement amplitude. At ultimate state, the length of plastic hinge is almost equal to full depth of section. Using calibrated hysteresis models, the response of different specimens under two earthquakes has been analyzed. The analysis indicated that the ratio between displacement demand and capacity of standard specimens is about unity and that of deficient ones is about 1.7.

Optimization of ground response analysis using wavelet-based transfer function technique

  • Moghaddam, Amir Bazrafshan;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • 제7권2호
    • /
    • pp.149-164
    • /
    • 2014
  • One of the most advanced classes of techniques for ground response analysis is based on the use of Transfer Functions. They represent the ratio of Fourier spectrum of amplitude motion at the free surface to the corresponding spectrum of the bedrock motion and they are applied in frequency domain usually by FFT method. However, Fourier spectrum only shows the dominant frequency in each time step and is unable to represent all frequency contents in every time step and this drawback leads to inaccurate results. In this research, this process is optimized by decomposing the input motion into different frequency sub-bands using Wavelet Multi-level Decomposition. Each component is then processed with transfer Function relating to the corresponding component frequency. Taking inverse FFT from all components, the ground motion can be recovered by summing up the results. The nonlinear behavior is approximated using an iterative procedure with nonlinear soil properties. The results of this procedure show better accuracy with respect to field observations than does the Conventional method. The proposed method can also be applied to other engineering disciplines with similar procedure.

KS50N Rail 용접부의 피로균열 성장거동 (A Study for Fatigue Crack Propagation Behavior of KS50N Rail Steel under Welding Line)

  • 박제용;지용찬;김진성;정경희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.553-559
    • /
    • 1998
  • This thesis studied to evaluate the fatigue behavior and propagation of rail steel under welding line. Test of crack growth was performed by all member of rail under constant amplitude loading at the structures laboratory in Hongik University. The effect of the following parameters with initiated crack length on the bottom edge of rail were studied. Here, fracture mechanics mode is opening mode. and Testing Material is KS50N Rail. From analysis and experimented result on the three Point bending in the lab, This paper presented a effect of crack growth , shape and remaining service life. Further more, according to the variable crack length, variable section and the ratio of section the fatigue behavior and propagation were studied.

  • PDF

A Study on the Frequency Response Characteristics of High Response Flow Control Servo Valve

  • Seo Jong Soo;Shin You Sik;Chun Young Heung;Jeong Hyo Min;Chung Han Shik
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제12권3호
    • /
    • pp.131-140
    • /
    • 2004
  • The purpose of this research is to derive the principal design parameters governing the dynamic characteristics of the high response flow control servo valve. For this purpose, a numerical modeling of the servo valve system and a parameter sensitivity analysis to a frequency response characteristics were performed. As a result of these analysis, a basis for improvement of a dynamic characteristics of servo valve was arranged.

A Novel Measurement Approach for the Half-wave Voltage of Phase Modulator based on PM-MZI Photonic Link

  • Xianghua, Li;Chun, Yang;Quanyi, Ye;Yuhua, Chong;Zhenghua, Zhou
    • Journal of the Optical Society of Korea
    • /
    • 제18권3호
    • /
    • pp.288-291
    • /
    • 2014
  • This paper presents a new method for measuring the half-wave voltage $V_{\pi}$ of an electro-optic phase modulator based on a phase-modulated photonic link with interferometric demodulation. By using this method, the $V_{\pi}$ can be obtained with the RF voltage amplitude input required to achieve 1-dB gain compression of link and the differential delay of a Mach-Zehnder interferometer. We measure the $V_{\pi}$ of a commercial phase modulator by using the presented method and the carrier/the first sideband intensity ratio method. Furthermore, we compare the two measurements with the typical value provided by the manufacturer. The experiment shows that this novel measurement method is feasible, straightforward, and accurate.

능동형 횡동요 저감 장치를 이용한 선박운동제어 시뮬레이션 (Simulation of Vessel Motion Control by Anti-Rolling Tank)

  • 김경성;이병혁
    • 한국해양공학회지
    • /
    • 제32권6호
    • /
    • pp.440-446
    • /
    • 2018
  • The effects of an anti-rolling tank (ART) on vessel motions were numerically investigated. The potential-based BEM vessel motion simulation program and particle-based computational fluid dynamics program were dynamically coupled and used to perform a simulation of vessel motions with ART. From the time domain simulation results, the response amplitude operators for sway and roll motions were obtained and compared with the corresponding experimental and numerical results. Because the main purpose of ART was only to reduce roll motions, it was important to show that the natural properties of a floating vessel were not changed by the effects of ART. Various ART filling ratios and several ART positions were considered. In conclusion, ART only reduced the roll motion regardless of its filling ratio and position.

Comparative Measurement of Transverse Nuclear Magnetization of Polarized 129Xe and 131Xe by Spin-exchange Optical Pumping

  • Yu, Ye Jin;Min, Seong Ho;Moon, Han Seb
    • Current Optics and Photonics
    • /
    • 제4권6호
    • /
    • pp.466-471
    • /
    • 2020
  • We analyze the transverse nuclear magnetizations of 129Xe and 131Xe in a vapor cell containing natural Xe, 87Rb, and buffer gases. Th e Xe atoms are polarized th rough spin-exch ange optical pumping (SEOP) with Rb atoms under low-magnetic-field conditions. From the free-induction-decay (FID) signal, we measure the nuclear magnetization of the Xe atoms in the Xe-Rb vapor cell. Furthermore, we measure the dependence of the gyromagnetic ratio on the magnetization of 129Xe and 131Xe by examining the amplitude of the FID signal of each isotope, and we evaluate the relationship between the magnetic field gradient and transverse relaxation rate for both of the 129Xe and 131Xe isotopes.