• 제목/요약/키워드: Amplify-and-forward relay

검색결과 135건 처리시간 0.023초

Performance Analysis of Full-Duplex Relay Networks with Residual Self-Interference and Crosstalk

  • Liu, Guoling;Feng, Wenjiang;Zhang, Bowei;Ying, Tengda;Lu, Luran
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권10호
    • /
    • pp.4957-4976
    • /
    • 2016
  • This paper investigates the error performance of the amplify-and-forward (AF) relaying systems in the context of full-duplex (FD) communication. In addition to the inherent self-interference (SI) due to simultaneous transmission and reception, coexistent FD terminals may cause crosstalk. In this paper, we utilize the information exchange via the crosstalk channel to construct a particular distributed space-time code (DSTC). The residual SI is also considered. Closed-form pairwise error probability (PEP) is first derived. Then we obtain the upper bound of PEP in high transmit power region to provide more insights of diversity and coding gain. The proposed DSTC scheme can attain full cooperative diversity if the variance of SI is not a function of the transmit power. The coding gain can be improved by lengthening the frame and proper power control. Feasibility and efficiency of the proposed DSTC are verified in numerical simulations.

Exploiting Optimal Throughput of Adaptive Relaying Based Wireless Powered Systems under Impacts of Co-channel Interference

  • Nguyen, Thanh-Luan;Do, Dinh-Thuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권5호
    • /
    • pp.2009-2028
    • /
    • 2018
  • Considering a dual-hop energy-harvesting (EH) relaying system, this paper advocates novel relaying protocols based on adaptive time power switching-based relaying (AR) architecture for amplify-and-forward (AF) mode. We introduce novel system model relaying network with impacts of co-channel interference (CCI) and derive analytical expressions for the average harvested energy, outage probability, and the optimal throughput of the information transmission link, taking into account the effect of CCI from neighbor cellular users. In particular, we consider such neighbor users procedure CCI both on the relay and destination nodes. Theoretical results show that, in comparison with the conventional solutions, the proposed model can achieve optimal throughput efficiency for sufficiently small threshold SNR with condition of reasonable controlling time switching fractions and power splitting fractions in concerned AR protocol. We also explore impacts of transmission distances in each hop, transmission rate, the other key parameters of AR to throughput performance for different channel models. Simulation results are presented to corroborate the proposed methodology.

Q-Learning을 이용한 릴레이 선택 기법 (A Relay Selection Scheme with Q-Learning)

  • 정홍규;김광열;신요안
    • 대한전자공학회논문지TC
    • /
    • 제49권6호
    • /
    • pp.39-47
    • /
    • 2012
  • 차세대 무선통신 시스템에서 다중 경로 페이딩의 영향을 효율적으로 감소시키기 위한 방법으로 최근 협력통신 시스템이 각광을 받고 있다. 협력통신 시스템은 정보를 전송하기 위해서 다양한 페이딩 계수를 가지고 있는 협력 릴레이를 사용하기 때문에, 모든 릴레이를 협력통신에 참여 시키는 것은 자원의 낭비를 초래한다. 그러므로 무선자원을 효율적으로 사용하기 위해서는 최적의 릴레이를 선택적으로 사용할 필요가 있다. 본 논문에서는 무선 협력통신 네트워크에서 발생하는 이러한 문제를 해결하기 위하여 Q-Learning 알고리즘을 이용한 협력 릴레이 선택 기법을 제안한다. Q-Learning에서는 자가 학습을 위해서 상태, 행동, 그리고 보상에 대한 파라미터를 정의한다. 이러한 파라미터가 잘 정의 될 때 Q-Learning을 이용하여 우수한 통신 성능을 얻을 수 있다. Q-Learning 알고리즘의 우수성을 보이기 위해서, 수학적인 분석을 통해서 최적의 협력 릴레이를 얻는 기법과 통신 성능을 비교하였다. 모의실험 결과, 제안된 기법에서 Q-Learning 알고리즘 내의 보상을 주는 방식에 따라, 비교 기법과 유사한 심벌오율 성능을 얻으면서 보다 더 적은 협력 릴레이를 선택하는 것을 보였다. 따라서 본 논문에서 제안된 기법은 다수의 릴레이를 사용하는 차세대 무선통신 시스템의 성능 향상을 위한 좋은 접근 방식의 하나로 판단된다.

Distributed Matching Algorithms for Spectrum Access: A Comparative Study and Further Enhancements

  • Ali, Bakhtiar;Zamir, Nida;Ng, Soon Xin;Butt, Muhammad Fasih Uddin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1594-1617
    • /
    • 2018
  • In this paper, we consider a spectrum access scenario which consists of two groups of users, namely Primary Users (PUs) and Secondary Users (SUs) in Cooperative Cognitive Radio Networks (CCRNs). SUs cooperatively relay PUs messages based on Amplify-and-Forward (AF) and Decode-and-Forward (DF) cooperative techniques, in exchange for accessing some of the spectrum for their secondary communications. From the literatures, we found that the Conventional Distributed Algorithm (CDA) and Pragmatic Distributed Algorithm (PDA) aim to maximize the PU sum-rate resulting in a lower sum-rate for the SU. In this contribution, we have investigated a suit of distributed matching algorithms. More specifically, we investigated SU-based CDA (CDA-SU) and SU-based PDA (PDA-SU) that maximize the SU sum-rate. We have also proposed the All User-based PDA (PDA-ALL), for maximizing the sum-rates of both PU and SU groups. A comparative study of CDA, PDA, CDA-SU, PDA-SU and PDA-ALL is conducted, and the strength of each scheme is highlighted. Different schemes may be suitable for different applications. All schemes are investigated under the idealistic scenario involving perfect coding and perfect modulation, as well as under practical scenario involving actual coding and actual modulation. Explicitly, our practical scenario considers the adaptive coded modulation based DF schemes for transmission flexibility and efficiency. More specifically, we have considered the Self-Concatenated Convolutional Code (SECCC), which exhibits low complexity, since it invokes only a single encoder and a single decoder. Furthermore, puncturing has been employed for enhancing the bandwidth efficiency of SECCC. As another enhancement, physical layer security has been applied to our system by introducing a unique Advanced Encryption Standard (AES) based puncturing to our SECCC scheme.

A Game Theoretic Study of Energy Efficient Cooperative Wireless Networks

  • Brown, Donald Richard III;Fazel, Fatemeh
    • Journal of Communications and Networks
    • /
    • 제13권3호
    • /
    • pp.266-276
    • /
    • 2011
  • In wireless networks, it is well-known that intermediate nodes can be used as cooperative relays to reduce the transmission energy required to reliably deliver a message to an intended destination. When the network is under a central authority, energy allocations and cooperative pairings can be assigned to optimize the overall energy efficiency of the network. In networks with autonomous selfish nodes, however, nodes may not be willing to expend energy to relay messages for others. This problem has been previously addressed through the development of extrinsic incentive mechanisms, e.g., virtual currency, or the insertion of altruistic nodes in the network to enforce cooperative behavior. This paper considers the problem of how selfish nodes can decide on an efficient energy allocation and endogenously form cooperative partnerships in wireless networks without extrinsic incentive mechanisms or altruistic nodes. Using tools from both cooperative and non-cooperative game theory, the three main contributions of this paper are (i) the development of Pareto-efficient cooperative energy allocations that can be agreed upon by selfish nodes, based on axiomatic bargaining techniques, (ii) the development of necessary and sufficient conditions under which "natural" cooperation is possible in systems with fading and non-fading channels without extrinsic incentive mechanisms or altruistic nodes, and (iii) the development of techniques to endogenously form cooperative partnerships without central control. Numerical results with orthogonal amplify-and-forward cooperation are also provided to quantify the energy efficiency of a wireless network with sources selfishly allocating transmission/relaying energy and endogenously forming cooperative partnerships with respect to a network with centrally optimized energy allocations and pairing assignments.