• 제목/요약/키워드: Amplify and forward

검색결과 162건 처리시간 0.022초

네트워크 코딩 기반의 협력통신에서 Hybrid AF and DF 방식의 아웃티지 성능 분석 및 최적 파워 할당 기법 (Outage Analysis and Optimal Power allocation for Network-coding-based Hybrid AF and DF)

  • 백주하;이동훈;이재영;허준
    • 방송공학회논문지
    • /
    • 제17권1호
    • /
    • pp.95-107
    • /
    • 2012
  • 네트워크 코딩은 멀티캐스트 네트워크에서 전송량을 증가시키기 위해 제안된 기법으로 최근에는 다수의 사용자가 성능 향상을 위해서로의 자원을 공유하는 협력통신에 네트워크 코딩을 적용하는 연구가 활발히 진행 중이다. 네트워크 코딩 기반의 협력통신에서 사용자는 자기 자신의 데이터와 다른 사용자의 데이터를 네트워크 코딩 연산을 통해 결합하여 전송한다. 기존의 연구에서는 네트워크 코딩을 기반으로 한 적응형 복호 후 전송(Network-Coding-based Adaptive Decode-and-Forward, NC-ADF) 방식이 다이버시티(diversity) 이득과 추가적인 전송량 증대를 가져올 수 있음을 보였다. 본 논문에서는 기존 프로토콜의 성능 증대와 네트워크 코딩의 이득을 극대화 하기 위해 사용자간 채널의 상태에 따라 증폭 후 전송(Amplify-and-Forward, AF) 방식과 복호 후 전송(Decode-and-Forward, DF) 방식을 적응적으로 적용한 새로운 네트워크 코딩 기반의 협력통신 기법을 제안하였다. 또한 제안한 기법의 아웃티지 확률을 구하고 높은 SNR 영역에서 최대 다이버시티 차수(full diversity order)를 가짐을 보였다. 나아가 추가적인 성능 향상을 위해 본 논문에서 제안된 기법에 의한 아웃티지 확률을 기반으로 최적의 전송 파워 비율을 구하였다.

Optimized Relay Selection and Power Allocation by an Exclusive Method in Multi-Relay AF Cooperative Networks

  • Bao, Jianrong;Jiang, Bin;Liu, Chao;Jiang, Xianyang;Sun, Minhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권7호
    • /
    • pp.3524-3542
    • /
    • 2017
  • In a single-source and multi-relay amplify-forward (AF) cooperative network, the outage probability and the power allocation are two key factors to influence the performance of an entire system. In this paper, an optimized AF relay selection by an exclusive method and near optimal power allocation (NOPA) is proposed for both good outage probability and power efficiency. Given the same power at the source and the relay nodes, a threshold for selecting the relay nodes is deduced and employed to minimize the average outage probability. It mainly excludes the relay nodes with much higher thresholds over the aforementioned threshold and thus the remainders of the relay nodes participate in cooperative forwarding efficiently. So the proposed scheme can improve the utility of the resources in the cooperative multi-relay system, as well as reduce the computational complexity. In addition, based on the proposed scheme, a NOPA is also suggested to approach sub-optimal power efficiency with low complexity. Simulation results show that the proposed scheme obtains about 2.1dB and 5.8dB performance gain at outage probability of $10^{-4}$, when compared with the all-relay-forward (6 participated relays) and the single-relay-forward schemes. Furthermore, it obtains the minimum outage probability among all selective relay schemes with the same number of the relays. Meanwhile, it approaches closely to the optimal exhaustive scheme, thus reduce much complexity. Moreover, the proposed NOPA scheme achieves better outage probability than those of the equal power allocation schemes. Therefore, the proposed scheme can obtain good outage probability, low computational complexity and high power efficiency, which makes it pragmatic efficiently in the single-source and multi-relay AF based cooperative networks.

증폭 후 전달 릴레이 시스템을 위한 송신 Maximum-Ratio-Combining과 릴레이 선택 다이버시티에 대한 Outage 확률 분석 (Outage Probability of Transmit Maximum-Ratio-Combining and Relay Selection Diversity for Amplify-and-Forward Relaying System)

  • 민현기;이성은;홍대식
    • 대한전자공학회논문지TC
    • /
    • 제45권2호
    • /
    • pp.13-18
    • /
    • 2008
  • 본 논문에서는 M 개의 전송 안테나를 가진 송신국(source)이 단일 안테나를 가진 R 개의 릴레이(relay)를 이용하여 단일 안테나를 가진 수신국(destination)에 신호를 전송하는 증폭 후 전달(amplify-and-forward, AF) 릴레이 시스템에서의 outage 확률 성능을 살펴본다. 이때, R 개의 릴레이 중에서 수신국에서의 수신 신호에 대한 가장 큰 신호 대 잡음비(signal-to-noise ratio, SNR)를 보장하는 하나의 릴레이를 선택하는 최적 릴레이 선택(best relay selection) 기법이 사용되고, 송신국과 선택된 릴레이 링크에서 송신 maximum-ratio-combining(transmit MRC)이 적용되었을 때의 AF 릴레이 시스템의 outage 확률을 분석한다. 또한, 분석의 타당성을 입증하기 위해 모의실험들을 제공한다.

Soft-Decision-and-Forward Protocol for Cooperative Communication Networks with Multiple Antennas

  • Yang, Jae-Dong;Song, Kyoung-Young;No, Jong-Seon;Shin, Dong-Joan
    • Journal of Communications and Networks
    • /
    • 제13권3호
    • /
    • pp.257-265
    • /
    • 2011
  • In this paper, a cooperative relaying protocol called soft-decision-and-forward (SDF) with multiple antennas in each node is introduced. SDF protocol exploits the soft decision source symbol values from the received signal at the relay node. For orthogonal transmission (OT), orthogonal codes including Alamouti code are used and for non-orthogonal transmission (NT), distributed space-time codes are designed by using a quasi-orthogonal space-time block code. The optimal maximum likelihood (ML) decoders for the proposed protocol with low decoding complexity are proposed. For OT, the ML decoders are derived as symbolwise decoders while for NT, the ML decoders are derived as pairwise decoders. It can be seen through simulations that SDF protocol outperforms AF protocol for both OT and NT.

레일리페이딩 환경에서 복호 후 재전송방식을 위한 부분적 릴레이 선택방식 연구 (Partial Relay Selection for Decode and Forward over Rayleigh Fading Channels)

  • 보 뉘엔 �o 바오;공형윤
    • 한국통신학회논문지
    • /
    • 제34권7A호
    • /
    • pp.523-529
    • /
    • 2009
  • This paper provides closed form expressions for the evaluation of the end-to-end outage probability, symbol error rate, bit error rate and average capacity of the partial-based Decode-and-Forward (DF) relay selection scheme with an arbitrary number of relays. In a comparison with the performance of systems that exploit Amplify-and-Forward (AF), it can be seen that the performance of our proposed protocol converges to that of partial-based AF relay selection in high SNR regime. We also perform Monte-Carlo simulations to validate the analysis.

Joint Relay-and-Antenna Selection and Power Allocation for AF MIMO Two-way Relay Networks

  • Wang, xiaoxiang;Zhou, Jia;Wang, DongYu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.1016-1033
    • /
    • 2016
  • In this paper, we present a joint relay-and-antenna selection and power allocation strategy for multiple-input multi-output (MIMO) amplify-and-forward (AF) two-way relay networks (TWRNs). In our approach, we select the best transmit and receive antennas at the two sources, a best relay and a best transmit and receive antenna at the selected relay based on maximizing the minimum of the end-to-end received signal-to-noise-ratios (SNRs) under a total transmit power constraints. We obtained the closed-form solution for the optimal power allocation firstly. Then with the optimal allocation solution we found, we can reduce the joint relay-and-antenna selection to a simpler problem. Besides, the overall outage probability is investigated and a tight closed-form approximation is derived, which provides a method to evaluate the outage performance easily and fast. Simulation results are presented to verify the analysis.

Energy Efficiency Maximization for Energy Harvesting Bidirectional Cooperative Sensor Networks with AF Mode

  • Xu, Siyang;Song, Xin;Xia, Lin;Xie, Zhigang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권6호
    • /
    • pp.2686-2708
    • /
    • 2020
  • This paper investigates the energy efficiency of energy harvesting (EH) bidirectional cooperative sensor networks, in which the considered system model enables the uplink information transmission from the sensor (SN) to access point (AP) and the energy supply for the amplify-and-forward (AF) relay and SN using power-splitting (PS) or time-switching (TS) protocol. Considering the minimum EH activation constraint and quality of service (QoS) requirement, energy efficiency is maximized by jointly optimizing the resource division ratio and transmission power. To cope with the non-convexity of the optimizations, we propose the low complexity iterative algorithm based on fractional programming and alternative search method (FAS). The key idea of the proposed algorithm first transforms the objective function into the parameterized polynomial subtractive form. Then we decompose the optimization into two convex sub-problems, which can be solved by conventional convex programming. Simulation results validate that the proposed schemes have better output performance and the iterative algorithm has a fast convergence rate.

Performance Comparison of Orthogonal and Non-orthogonal AF Protocols in Cooperative Relay Systems

  • Bae, Young-Taek;Jung, Sung-Kyu;Lee, Jung-Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권4호
    • /
    • pp.1026-1040
    • /
    • 2012
  • For a single relay channel, we compare the capacity of two different amplify-and-forward (AF) protocols, which are orthogonal AF (OAF) and non-orthogonal AF (NAF). The NAF protocol has been proposed to overcome a significant loss of performance of OAF in the high spectral efficiency region, and it was also theoretically proved that NAF performs better than OAF in terms of the diversity-multiplexing tradeoff. However, existing results have been evaluated at the asymptotically high signal to noise ratio (SNR), thus the power allocation problem between the source and the relay was neglected. We examine which protocol has better performance in a practical system operating at a finite SNR. We also study where a relay should be located if we consider the power allocation problem. A notable conclusion is that the capacity performance depends on both SNR and power allocation ratio, which indicates OAF may perform better than NAF in a certain environment.

BLUE-Based Channel Estimation Technique for Amplify and Forward Wireless Relay Networks

  • PremKumar, M.;SenthilKumaran, V.N.;Thiruvengadam, S.J.
    • ETRI Journal
    • /
    • 제34권4호
    • /
    • pp.511-517
    • /
    • 2012
  • The best linear unbiased estimator (BLUE) is most suitable for practical application and can be determined with knowledge of only the first and second moments of the probability density function. Although the BLUE is an existing algorithm, it is still largely unexplored and has not yet been applied to channel estimation in amplify and forward (AF)-based wireless relay networks (WRNs). In this paper, a BLUE-based algorithm is proposed to estimate the overall channel impulse response between the source and destination of AF strategy-based WRNs. Theoretical mean square error (MSE) performance for the BLUE is derived to show the accuracy of the proposed channel estimation algorithm. In addition, the Cram$\acute{e}$r-Rao lower bound (CRLB) is derived to validate the MSE performance. The proposed BLUE channel estimation algorithm approaches the CRLB as the length of the training sequence and number of relays increases. Further, the BLUE performs better than the linear minimum MSE estimator due to the minimum variance characteristic exhibited by the BLUE, which happens to be a function of signal-to-noise ratio.

Joint Relay Selection and Power Allocation for Two-way Relay Channels with Asymmetric Traffic Requirements

  • Lou, Sijia;Yang, Longxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권8호
    • /
    • pp.1955-1971
    • /
    • 2013
  • This paper studies relay selection and power allocation for amplify-and-forward (AF) based two-way relay networks (TWRN) with asymmetric traffic requirements (ATR). A joint relay selection and power allocation algorithm is proposed to decrease the outage probability of TWRN with ATR. In this algorithm, two sources exchange information with the help of the relay during two time slots. We first calculate the optimal power allocation parameters based on instantaneous channel state information (CSI), and then derive a tight lower bound of outage probability. Furthermore, we propose a simplified relay selection criterion, which can be easily calculated as harmonic mean of instantaneous channel gains, according to the outage probability expressions. Simulation results verified the theoretical analyses we presented. It is shown that the outage probability of our algorithm improves 3-4dB comparing with that of other existing algorithms, and the lower bound is tight comparing with actual value for the entire signal-to-noise ratio (SNR) region.