• 제목/요약/키워드: Amplification Ratio of Random Error

검색결과 3건 처리시간 0.021초

평면 음향 홀로그래피에서 센서간 특성 차이와 측정 위치의 부정확성에 의한 음압 추정 오차의 정량화 (Quantification of Acoustic Pressure Estimation Error due to Sensor and Position Mismatch in Planar Acoustic Holography)

  • 남경욱;김양한
    • 소음진동
    • /
    • 제8권6호
    • /
    • pp.1023-1029
    • /
    • 1998
  • When one attempts to construct a hologram. one finds that there are many sources of measurement errors. These errors are even amplified if one predicts the pressures close to the sources. The pressure estimation errors depend on the following parameters: the measurement spacing on the hologram plane. the prediction spacing on the prediction plane. and the distance between the hologram and the prediction plane. This raper analyzes quantitatively the errors when these are distributed irregularly on the hologram plane The sensor mismatch and inaccurate measurement location. position mismatch. are mainly addressed. In these cases. one can assume that the measurement is a sample of many measurement events. The bias and random error are derived theoretically. Then the relationship between the random error amplification ratio and the parameters mentioned above is examined quantitatively in terms of energy.

  • PDF

구형 음향 홀로그래피에서 측정위치 부정확성에 의한 음압 추정 오차의 정량화 (Quantification of Acoustic Pressure Estimation Error due to Sensor Position Mismatch in Spherical Acoustic Holography)

  • 이승하;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1325-1328
    • /
    • 2007
  • When we visualize the sound field radiated from a spherical sound source, spherical acoustic holography is proper among acoustic holography methods. However, there are measurement errors due to sensor position mismatch, sensor mismatch, directivity of sensor, and background noise. These errors are amplified if one predicts the pressures close to the sources: backward prediction. The goal of this paper is to quantitatively examine the effects of the error due to sensor position mismatch on acoustic pressure estimation. This paper deals with the cases of which the measurement deviations are distributed irregularly on the hologram plane. In such cases, one can assume that the measurement is a sample of many measurement events, and the cause of the measurement error is white noise on the hologram plane. Then the bias and random error are derived mathematically. In the results, it is found that the random error is important in the backward prediction. The relationship between the random error amplification ratio and the measurement parameters is derived quantitatively in terms of their energies.

  • PDF

Declutching control of a point absorber with direct linear electric PTO systems

  • Zhang, Xian-Tao;Yang, Jian-Min;Xiao, Long-Fei
    • Ocean Systems Engineering
    • /
    • 제4권1호
    • /
    • pp.63-82
    • /
    • 2014
  • Declutching control is applied to a hemispherical wave energy converter with direct linear electric Power-Take-Off systems oscillating in heave direction in both regular and irregular waves. The direct linear Power-Take-Off system can be simplified as a mechanical spring and damper system. Time domain model is applied to dynamics of the hemispherical wave energy converter in both regular and irregular waves. And state space model is used to replace the convolution term in time domain equation of the heave oscillation of the converter due to its inconvenience in analyzing the controlled motion of the converters. The declutching control strategy is conducted by optimal command theory based on Pontryagin's maximum principle to gain the controlled optimum sequence of Power-Take-Off forces. The results show that the wave energy converter with declutching control captures more energy than that without control and the former's amplitude and velocity is relatively larger. However, the amplification ratio of the absorbed power by declutching control is only slightly larger than 1. This may indicate that declutching control method may be inapplicable for oscillating wave energy converters with direct linear Power-Take-Off systems in real random sea state, considering the error of prediction of the wave excitation force.