• Title/Summary/Keyword: Amorphous Si film

Search Result 585, Processing Time 0.026 seconds

Effect of Deposition Temperature on the Electrical Performance of SiZnSnO Thin Film Transistors Fabricated by RF Magnetron Sputtering (스퍼터 공정을 이용한 SiZnSnO 산화물 반도체 박막 트랜지스터의 증착 온도에 따른 특성)

  • Ko, Kyung Min;Lee, Sang Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.282-285
    • /
    • 2014
  • We have investigated the structural and electrical properties of Si-Zn-Sn-O (SZTO) thin films deposited by RF magnetron sputtering at various deposition temperatures from RT to $350^{\circ}C$. All the SZTO thin fims are amorphous structure. The mobility of SZTO thin film has been changed depending on the deposition temperature. SZTO thin film transistor shows mobility of 8.715 $cm^2/Vs$ at room temperature. We performed the electrical stress test by applying gate and drain voltage. SZTO thin film transistor shows good stability deposited at room temperature while showing poor stability deposited at $350^{\circ}C$. As a result, the electrical performance and stability have been changed depending on deposition temperature mainly because high deposition temperature loosened the amorphous structure generating more oxygen vacancies.

Magneto-Impedance Effect of FeCoSiB Amorphous Magnetic Films (FeCoSiB계 아몰퍼스 자성박막의 자기-임피 던스 효과)

  • Shin, Yong-Jin;Soh, Dae-Hwa;Kim, Hyen-Wook;Kim, Dae-Ju;Seo, Kang-Soo
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.252-255
    • /
    • 1998
  • In this paper, we investigate the magneto-impedance(M1) effect of the FeCoSiB amorphous magnktic films. The amorphous magnetic film having near zero magnetostriction is fabricated by using the sputtering method, and then annealed in magnetic field. When the external magnetic field is directly applied to the fabricated film, the voltage amplitude between both side of the magnetic film varies about 76.2% at 120[MHzl and the impedance varies about 2.1%/0e. Thus, we find that the fabricated magnetic film has the characteristics of good sensor element.

  • PDF

Field Electron Emission from Amorphous Carbon Thin Film Grown Using Rf Magnetron Sputtering Method (RF 마그네트론 스퍼터링법으로 성장된 Amorphous carbon 각막의 전계전자방출)

  • ;;K. Oura
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.234-240
    • /
    • 2001
  • Using RF magnetron sputtering, amorphous carbon(a-C) thin films as electron filed emitter were fabricated. these a-C thin films were deposited on Si(001) substrate at several temperatures. The field electron emission property of these a-C thin films was estimated by a diode technique. As the result, we observed that the field emission properties of the films were changed singnificantly with the substrate temperature and structural features of a-C film. The field emission properties were promoted by higher substrate temperatures. Furthermore N-doped a-C film exhibits more field emission property than that of undoped a-C film. These results are explained as change of surface morphology and structural properties of a-C film.

  • PDF

Characteristics variation of CoCrTa/Si double layer thin film on variation of underlayer substrate temperature (하지층기판온도에 따른 CoCrTa/Si 이층박막의 특성변화)

  • Park, W.H.;Kim, Y.J.;Keum, M.J.;Ka, C.H.;Son, I.H.;Choi, H.W.;Kim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.77-80
    • /
    • 2001
  • Crystallographic and magnetic characteristics of CoCr-based magnetic thin film for perpendicular magnetic recording media were influenced on preparing conditions. In these, there is that substrate temperature was parameter that increases perpendicular coercivity of CoCrTa magnetic layer using recording layer. While preparation of CoCr-based doublelayer, by optimizing substrate temperature, we expect to increase perpendicular anisotropy of CoCr magnetic layer and prepare ferromagnetic recording layer with a good quality by epitaxial growth. CoCrTa/Si doublelayer showed a good dispersion angle of c-axis orientation $\Delta\theta_{50}$ caused by inserting amorphous Si underlayer which prepared at underlayer substrate temperature 250C. Perpendicular coercivity was constant, in-plane coercivity was controlled a low value about 200Oe. This result implied that Si underlayer could restrain growth of initial layer of CoCrTa thin film, which showed bad magnetic properties effectively without participating magnetization patterns of magnetic layer. In case of CoCrTa/Si that prepared with ultra thin underlayer, crystalline orientation of CoCrTa was improved rather underlayer thickness 1nm, it was expected that amorphous Si layer played a important role in not only underlayer but also seed layer.

  • PDF

Effects of Photon Energy Spectrum on the Photocurrent of Hydrogenated Amorphous Silicon Thin Film Transistor by Using Frequency Filters

  • Cho, Eou Sik;Kwon, Sang Jik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.16-19
    • /
    • 2013
  • Frequency filters with various filtering wavelengths were used in the photoelectric characterization of hydrogenated amorphous silicon thin film transistor (a-Si:H TFT) and the experimental results were described and analyzed in terms of the photon energy spectral characteristics calculated from the integration of the photon energy and the spectral intensity of transmitted backlight through the filters at each wavelength. From the comparison of the photocurrents and the calculated photon energy spectrums for the filtered ranges of wavelength, it was possible to conclude that the photocurrents are closely related to the photon energy spectrums of the backlight.

Investigation on Electrical Property of Amorphous Oxide SiZnSnO Semiconducting Thin Films (비정질 산화물 SiZnSnO 반도체 박막의 전기적 특성 분석)

  • Byun, Jae Min;Lee, Sang Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.272-275
    • /
    • 2019
  • We investigated the electrical characteristics of amorphous silicon-zinc-tin-oxide (a-SZTO) thin films deposited by RF-magnetron sputtering at room temperature depending on the deposition time. We fabricated a thin film transistor (TFT) with a bottom gate structure and various channel thicknesses. With increasing channel thickness, the threshold voltage shifted negatively from -0.44 V to -2.18 V, the on current ($I_{on}$) and field effect mobility (${\mu}_{FE}$) increased because of increasing carrier concentration. The a-SZTO film was fabricated and analyzed in terms of the contact resistance and channel resistance. In this study, the transmission line method (TLM) was adopted and investigated. With increasing channel thickness, the contact resistance and sheet resistance both decreased.

A Study on the characteristics of polycrystalline silicon thin films prepared by solid phase cyrstallization (고상 결정화에 의해 제작된 다결정 실리콘 박막의 특성 연구)

  • 김용상
    • Electrical & Electronic Materials
    • /
    • v.10 no.8
    • /
    • pp.794-799
    • /
    • 1997
  • Poly-Si films have been prepared by solid phase crystallization of LPCVD(low-pressure CVD) amorphous silicon. The crystallinity of poly-Si films has been derived from UV reflectance spectrum and lies in the range between 70% and 80% . From XRD measurement the peak at 28.2$^{\circ}$from (111) plane is dominantly detected in the SPC poly-Si films, The average grain size of poly-Si film is determined by the image of SEM and varies from 4000 $\AA$ to 8000$\AA$. The electrical conductivity of as-deposited amorphous silicon film is about 2.5$\times$10$^{-7}$ ($\Omega$.cm)$^{-1}$ , and 3~4$\times$10$^{-6}$ ($\Omega$.cm)$^{-1}$ of room temperature conductivity is the SPC poly-Si films. The conductivity activation energies are 0.5~0.6 eV or the 500$\AA$-thick poly-Si films.

  • PDF

산소분압에 따른 IGZO 박막트랜지스터의 특성변화 연구

  • Han, Dong-Seok;Gang, Yu-Jin;Park, Jae-Hyeong;Yun, Don-Gyu;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.497-497
    • /
    • 2013
  • Semiconducting amorphous InGaZnO (a-IGZO) has attracted significant research attention as improved deposition techniques have made it possible to make high-quality a-IGZO thin films. IGZO thin films have several advantages over thin film transistors (TFTs) based on other semiconducting channel layers.The electron mobility in IGZO devices is relatively high, exceeding amorphous Si (a-Si) by a factor of 10 and most organic devices by a factor of $10^2$. Moreover, in contrast to other amorphous semiconductors, highly conducting degenerate states can be obtained with IGZO through doping, yet such a state cannot be produced with a-Si. IGZO thin films are capable of mobilities greaterthan 10 $cm^2$/Vs (higher than a-Si:H), and are transparent at visible wavelengths. For oxide semiconductors, carrier concentrations can be controlled through oxygen vacancy concentration. Hence, adjusting the oxygen partial pressure during deposition and post-deposition processing provides an effective method of controlling oxygen concentration. In this study, we deposited IGZO thinfilms at optimized conditions and then analyzed the film's electrical properties, surface morphology, and crystal structure. Then, we explored how to generate IGZO thin films using DC magnetron sputtering. We also describe the construction and characteristics of a bottom-gate-type TFT, including the output and transfer curves and bias stress instability mechanism.

  • PDF

Hysteresis Phenomenon of Hydrogenated Amorphous Silicon Thin Film Transistors for an Active Matrix Organic Light Emitting Diode (능동형 유기 발광 다이오드(AMOLED)에서 발생하는 수소화된 비정질 실리콘 박막 트랜지스터(Hydrogenated Amorphous Silicon Thin Film Transistor)의 이력 (Hysteresis) 현상)

  • Choi, Sung-Hwan;Lee, Jae-Hoon;Shin, Kwang-Sub;Park, Joong-Hyun;Shin, Hee-Sun;Han, Min-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.112-116
    • /
    • 2007
  • We have investigated the hysteresis phenomenon of a hydrogenated amorphous silicon thin film transistor (a-Si:H TFT) and analyzed the effect of hysteresis phenomenon when a-Si:H TFT is a pixel element of active matrix organic light emitting diode (AMOLED). When a-Si:H TFT is addressed to different starting gate voltages, such as 10V and 5V, the measured transfer characteristics with 1uA at $V_{DS}$ = 10V shows that the gate voltage shift of 0.15V is occurred due to the different quantities of trapped charge. When the step gate-voltage in the transfer curve is decreased from 0.5V to 0.05V, the gate-voltage shift is decreased from 0.78V to 0.39V due to the change of charge do-trapping rate. The measured OLED current in the widely used 2-TFT pixel show that a gate-voltage of TFT in the previous frame can influence OLED current in the present frame by 35% due to the change of interface trap density induced by different starting gate voltages.

Advances in Absorbers and Reflectors of Amorphous Silicon Oxide Thin Film Solar Cells for Tandem Devices (적층형 태양전지를 위한 비정질실리콘계 산화막 박막태양전지의 광흡수층 및 반사체 성능 향상 기술)

  • Kang, Dong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.115-118
    • /
    • 2017
  • Highly photosensitive and wide bandgap amorphous silicon oxide (a-$SiO_x$:H) films were developed at low temperature ranges ($100{\sim}150^{\circ}C$) with employing plasma-enhanced chemical vapor deposition by optimizing $H_2/SiH_4$ gas ratio and $CO_2$ flow. Photosensitivity more than $10^5$ and wide bandgap (1.81~1.85 eV) properties were used for making the a-$SiO_x$:H thin film solar cells, which exhibited a high open circuit voltage of 0.987 V at the substrate temperature of $100^{\circ}C$. In addition, a power conversion efficiency of 6.87% for the cell could be improved up to 7.77% by employing a new n-type nc-$SiO_x$:H/ZnO:Al/Ag triple back-reflector that offers better short circuit currents in the thin film photovoltaic devices.