• Title/Summary/Keyword: Amniocyte

Search Result 4, Processing Time 0.042 seconds

Analysis of haplotype and coamplification PCR of dystrophin gene and Y-specific gene using PEP-PCR in single fetal cells

  • Choi, Soo-Kyung;Kim, Jin-Woo;Cho, Eun-Hee;Ryu, Hyun-Mee;Kang, Inn-Soo
    • Journal of Genetic Medicine
    • /
    • v.2 no.1
    • /
    • pp.35-39
    • /
    • 1998
  • Duchenne/Becker muscular dystrophy are the major neuromuscular disorders with X-linked recessive inheritance. Preimplantation diagnosis of sex determination has been generally used to avoid male pregnancies with these diseases. However, in order to determine if the embryo is normal, carrier or affected regardless of the sex, there is a need for a combined analysis of specific exon on dystrophin gene as well as sex determination of embryo using the same biopsied blastomere. If the exon deletion is not determinable, further diagnosis of carrier or patient can be performed by haplotype analysis. In this study, we applied the primer extension preamplification (PEP) method, which amplifies the whole genome, in 40 cases of single amniocyte and 40 cases of chorionic villus cell. We analysed haplotypes using two (CA)n dinucleotide polymorphic markers located at the end of 5' and 3' region of the dystrophin gene. Exon 46 of dystrophin gene and DYZ3 on chromosome Y were chosen as a target sequence for coamplification PCR. Upon optimizing the conditions, the amplification rates were 91.25% (73/80) for haplotypes (92.5% in amniocyte, 90% in chorionic villus cell) and 88.75% (71/80) for coamplification (85% in amniocyte, 92.5% in chorionic villus cell). The result of the study indicates that haplotypes analysis and coamplification of dystrophin and Y-specific gene using PEP can be applied to prenatal and preimplantation diagnosis in Duchenne/Becker muscular dystrophy making it possible to determine if the fetus is a carrier or an affected one.

  • PDF

Effect of Amniotic Fluid Stem Cells and Amniotic Fluid Cells on the Wound Healing Process in a White Rat Model

  • Yang, Jung Dug;Choi, Dong Sik;Cho, Young Kyoo;Kim, Taek Kyun;Lee, Jeong Woo;Choi, Kang Young;Chung, Ho Yun;Cho, Byung Chae;Byun, Jin Suk
    • Archives of Plastic Surgery
    • /
    • v.40 no.5
    • /
    • pp.496-504
    • /
    • 2013
  • Background Amniotic-fluid-derived stem cells and amniocytes have recently been determined to have wound healing effects, but their mechanism is not yet clearly understood. In this study, the effects of amniotic fluid stem cells and amniocytes on wound healing were investigated through animal experiments. Methods On the back of Sprague-Dawley rats, four circular full-thickness skin wounds 2 cm in diameter were created. The wounds were classified into the following four types: a control group using Tegaderm disc wound dressings and experimental groups using collagen discs, amniotic fluid stem cell discs, and amniocyte discs. The wounds were assessed through macroscopic histological examination and immunohistochemistry over a period of time. Results The amniotic fluid stem cell and amniocyte groups showed higher wound healing rates compared with the control group; histologically, the inflammatory cell invasion disappeared more quickly in these groups, and there was more significant angiogenesis. In particular, these groups had significant promotion of epithelial cell reproduction, collagen fiber formation, and angiogenesis during the initial 10 days of the wound healing process. The potency of transforming growth factor-${\beta}$ and fibronectin in the experimental group was much greater than that in the control group in the early stage of the wound healing process. In later stages, however, no significant difference was observed. Conclusions The amniotic fluid stem cells and amniocytes were confirmed to have accelerated the inflammatory stage to contribute to an enhanced cure rate and shortened wound healing period. Therefore, they hold promise as wound treatment agents.

Analyses of Dystrophin Gene and Sex Determination using PEP-PCR in Single Fetal Cells (단일 태아세포에서의 PEP-PCR을 이용한 성의 결정과 Dystrophin 유전자 분석)

  • Choi, Soo-Kyung;Kim, Jin-Woo;Cho, Eun-Hee;Park, So-Yeon;Ryu, Hyun-Mee;Kang, Inn-Soo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.24 no.1
    • /
    • pp.51-56
    • /
    • 1997
  • Recently, through the development of the primer extension preamplification(PEP) method which amplifies the whole genome, simultaneous multiple DNA analysis has become possible. Whole genome from each single cell can be amplified using 15 base oligonucleotide random primer. The greatest advantage of PEP-PCR is the ability to investigate several loci simultaneously and confirm results by analysing multiple aliquots for each locus. This technique led to the development of preimplantation genetic disease diagnosis using blastomere from early embryo, sperm, polar body and oocyte. In this study, we applied PEP-PCR in 20 cases of single amniocyte and 20 cases of single chorionic villus cell for the clinical application of the prenatal and preimplantational genetic diagnosis. We analysed 7 gene loci simultaneously which are 46, 47 exons related to dystrophin gene, two VNTR (variable number tandem repeat) markers using 5'dysIII, 3'CA related to dystrophin gene and DYZ1, DYZ3, DYS14 regions on chromosome Y. In all the tests, 97.5% of PEP-PCR amplifications with single cells were successful. We obtained 38/40 (95%) accuracy in gender determination through chromosome analysis comparison. Therefore, these results have significant implications for a sperm or oocyte analysis and prenatal or preimplantational genetic diagnosis.

  • PDF

Chromosome Analysis in Clinical Samples by Chromosome Diagnostic System Using Fluorescence in Situ Hybridization (국산 Fluorescence in Situ Hybridization 시스템을 이용한 다양한 검체에서의 염색체 분석)

  • Moon, Shin-Yong;Pang, Myung-Geol;Oh, Sun-Kyung;Ryu, Buom-Yong;Hwang, Do-Yeong;Jung, Byeong-Jun;Choe, Jin;Sohn, Cherl;Chang, Jun-Keun;Kim, Jong-Won;Kim, Seok-Hyun;Choi, Young-Min
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.24 no.3
    • /
    • pp.335-340
    • /
    • 1997
  • Fluorescence in situ hybridization (FISH) techniques allow the enumeration of chromosome abnormalities and from a great potential for many clinical applications. In order to produce quantitative and reproducible results, expensive tools such as a cooled CCD camera and a computer software are required. We have developed a Chromosome Image Processing System (Chips) using FISH that allows the detection and mapping of the genetic aberrations. The aim of our study, therefore, is to evaluate the capabilities of our original system using a black-and-white video camera. As a model system, three repetitive DNA probes (D18Z1, DXZ1, and DYZ3) were hybridized to variety different clinical samples such as human metaphase spreads and interphase nuclei obtained from uncultured peripheral blood lymphocytes, uncultured amniocytes, and germ cells. The visualization of the FISH signals was performed using our system for image acquisition and pseudocoloring. FISH images were obtained by combining images from each of probes and DAPI counterstain captured separately. Using our original system, the aberrations of single or multiple chromosomes in a single hybridization experiment using chromosomes and interphase nuclei from a variety of cell types, including lymphocytes, amniocytes, sperm, and biopsied blastomeres, were enabled to evaluate. There were no differences in the image quality in accordance with FISH method, fluorochrome types, or different clinical samples. Always bright signals were detected using our system. Our system also yielded constant results. Our Chips would permit a level of performance of FISH analysis on metaphase chromosomes and interphase nuclei with unparalleled capabilities. Thus, it would be useful for clinical purposes.

  • PDF