• 제목/요약/키워드: Ammonium sulfate

검색결과 1,214건 처리시간 0.026초

Chelate 법(法)에 의(依)한 Phytin 분석(分析)에 관(關)한 연구(硏究) (Studies on the analysis of phytin by the Chelatometric method)

  • 신재두
    • Applied Biological Chemistry
    • /
    • 제10권
    • /
    • pp.1-13
    • /
    • 1968
  • phytin은 phytic acid의 금속염(金屬鹽)(주(主)로 Ca 와 Mg)임으로 그중(中)의 P,Ca 및 Mg를 정량(定量)하면 순도(純度)를 알 수 있고, 또 분자식(分子式)을 추정(推定)할 수 있다. 저자(著者)는 phytin 중(中)의 P,Ca 및 Mg를 정량분석(定量分析)하는 새로운 방법(방법)으로 서 phytin을 건식(乾式) 분해(分解)하고 ion 교환수지(交換樹脂)로 처리한 다음 Chelate 법(法)으로 정량(定量)하는 방법(方法)을 확정(確定)켰으며 그 결과(結果)를 요약(要約)하면 다음과 같다. 1) phytin 분석(分析)의 전처리과정(前處理課程)으로서는 phytin을 conc. $HNO_3$로 적시면서 $550{\sim}660^{\circ}C$에서 회화(灰化)하는 건식분해법(乾式分解法)을 썼다. 이 방법(方法)은 습식분해법(濕式分解法)보다 분석결과(分析結果)가 정확(正確)하다. 2) phytin을 건식분해(乾式分解)한 시료(試料)를 가지고 종래법(從來法)과 새로운 분석법(分析法) (본법(本法))에 의하여 P,Ca 및 Mg를 정량(定量)하였으며, 본법(本法)은 다음고 같다. phytin 회분(灰分 HCl 용액(溶液)을 양(陽) ion 교환수지(交換樹脂)로 처리하여 양(陽) ion 구분(區分)과 음(陰) ion 분리(分離)하고 양(陽) ion 구분(區分)의 일부(一部)를 pH 7.0로 한다음 완충액(緩衝液)($NH_3-NH_4Cl$으로 pH 10으로 하고 BT 지시약(指示藥)을 써서 표준(標準) EDTA 용액(溶液적정(滴定)하여 Ca와 Mg의 합계치(合計値)를 얻었다. 또 양(陽) ion 구분(區分)의 일부(一部)를 pH 7.0로 하고 표준(標準) EDTA 용액(溶液)을 소량(少量)넣고 8N-KOH로 pH $12{\sim}13$으로 하고 N-N 희석분말(稀釋粉末)을 지시약(指示藥) 으로써 표준(標準) EDTA 용액(溶液)으로 적정(滴定)하여 Ca 치(値)를 얻었다. Ca와 Mg의 합계결정치(合計決定値)와 Ca 적정치(滴定値) 차(差)로 Mg 치(値)를 얻었다. 음(陰) ion 구분(區分)으로부터 상법(常法)에 의하여 $MgNH_4PO_4$의 침전(沈澱)을 만들어서 HCl에 녹키고 일정량(一定量)의 표준(標準) EDTA 용액(溶液)을 넣어 pH 7.0로 한다음 완충액(緩衝液)으로 pH 10으로 하고 BT 지시약(指示藥)을 써서 표준(標準) Mg $SO_4$용액(溶液)으로 적정(滴定)하여 P 치(値)를 얻었다. 본법(本法)으로 Na-phytate를 분석(分析)한 결과(結果) Na-phytate의 분자식(分子式)을 $C_6H_6O_{24}P_6Mg_4CaNa_2{\cdot}5H_2O$라고 하였을 때의 이론치(理論値)에 비(比)하여 P가 98.9% Cark 97.1%, Mg가 99.1%이고 통계처리(統計處理)한 결과분석치(結果分析値)와 이론치(理論値)는 잘 일치(一致)된다. 그러나 종래법(從來法)에 의(依)한 분석치(分析値)는 이론치(理論値)에 비(比)하여 P가 92.40%, Cark 86.80%, Mg가 93.80%로서 이론치(理論値)와 일치(一致)하지 않는다. 3) Na-phytate를 전분(澱粉)과 일정(一定)한 비(比)로 혼합(混合)하고 본법(本法)으로 P,Ca 및 Mc를 정량(定量)한 결과(結果) 이들의 회수율(回收率)은 거의 100%이었다. 4) 본분석법(本分析法)의 정확성(正確性)을 재확인(再確認)하기 위하여 phytic acid 수용액(水溶液)에 $CaCl_2$수용액(水溶液)을 phytic acid 1M:$CaCl_25M:McCl_220M$의 비(比)로 반응(反應)서키어서 Ca 1 원자(原子), Mg 4원자함유(原子含有)된 Na-phytate를 합성(合成)하였으며 이것의 P,Ca 및 Mg 분석치(分析値)와 의(依한) 조제(調製) Naphytate의 분석치(分析値)와 일치(一致)되었다. 이상(以上)과 같이 phytin 시료(試料)를 건식분해(乾式分解)하고 ion 교환수지(交換樹脂)로 처리(處理)한 다음 Chelate 법(法)으로 P,Ca 및 Mg를 정량(定量)하는 본법(本法)은 정확(正確)하고 신속(迅速)한 phytin의 새 분석방법(分析方法)이라고 사료(思料)되는 바이다.

  • PDF

Myriococcum albomyces가 생산하는 Cellulase에 관한 연구 (Studies on the Cellulase produced by Myriococcum of albomyces)

  • 정동효
    • Applied Biological Chemistry
    • /
    • 제14권1호
    • /
    • pp.59-97
    • /
    • 1971
  • Myriococcum albomycesf가 생산하는 섬유소 분해효소군에 관한 연구로서 호소생산배지 및 조효소의 성질을 규명하고 몇 가지 효소군으로 정제한바 다음과 같은 결과를 얻었다. 1. 밀기울 고채해양의 각 효소 활성은 쌀겨고체배양 및 탈지대두박고체배양의 그것보다 강하였다. 2. 밀기울진탕, 쌀겨진탕배양 및 대두박진탕배양등은 상기의 고체배양보다 각 효소의 활성이 우수하였다. 3. $45^{\circ}C$에서 배양한 것이 배양기의 종류에 관계없이 $37^{\circ}C$$50^{\circ}C$에서 배양한 것보다 각 효소의 활성이 강하였다. 4. CMCase는 무기 질소원보다 유기 질소원을 첨가하므로서 더욱 생성이 촉진되었다. 5. 기본밀기울진탕배양기에 CMC, Avicel, 여지분말 등의 indncer를 첨가 하므로서 각 효소활성은 $1.5{\sim}3$배나 증가되었다. 6. CMC와 Avicel을 inducer로 하여 jar formentor에서 배양할 때 작 효소의 활성은 대개 5일째에 최고에 달하였다. 7. Cellulae 조효소의 최적 pH는 $4.0{\sim}4.5$, pH안정성은 $3.5{\sim}8.0$이였다. 그리고 최적온도는 $65^{\circ}C$ 부근으로 다른 사상균의 cellulase에 비하여 높으며 온도안정성도 $60^{\circ}C$에서 120분으로 거의 실활되지 않았다. 8. 조효소의 활성은 $Ca^{++}$, $Mg^{++}$으로 부활되며, $Hg^{++}$, $Cu^{++}$, $Ag^{+}$는 강한 저해체였다. 그리고 투석으로 약간 그 활성이 저하되었다. 9. 배양액을 여과하고 황산암모니움 분획, DEA-E-sephadex A-25, Amberlite CG-50 및 hydroxy-apatite column chromatography로 Avicel, CMC, 여지 분말에 대하여 활성이 다른 4개의 fraction을 분리 하고 이를 cellulase fraction I, fraction II-a, fraction II-b 및 fraction III라고 명명하였다. 10. 이들 4개의 fraction은 전기 영동, 초원심상 및 자외선흡수 등으로 보아서 단일의 단백질로 생각되었다. 11. Fraction I은 Avicelase활성이 강하고, fraction II-a는 cellobiase 활성이 강하였다. 그리고 fraction II는 CMCase 활성이 강하였으며, fraction III는 CMC 점도감소 활성이 강하였다. 12. 섬유소질을 각 fraction으로 가수분해한 최종산물은 cellobiose 및 glucose였다. 그리고 fraction I과 fraction II-a는 Avicel을 협동적으로 분해하였다. 13. Fraction I의 최적 pH 5.5, fraction II-a는 pH 5.0, fraction II-b는 pH 4.0, fractionIII는 pH $4.0{\sim}4.5$이며, 각 fraction의 pH 안정성은 pH $3.0{\sim}7.0$이였다. 14. Fraction I의 최적온도는 $50^{\circ}C$, fractionII-a는 $55{\sim}60^{\circ}C$, fraction II-b 는 $60^{\circ}C$, fraction III는 $55^{\circ}C$이며 각 fraction의 열안정성은 $55^{\circ}C$ 부근에서 120분으로 거의 실활되지 않고 fraction II-a는 $60^{\circ}C$에서도 특별히 안정하였다. 15. Fraction I과 fraction II-b 활성은 $Ag^{++}$, $Hg^{++}$에 의하여 저해되며 $Ca^{++}$, $Mg^{++}$으로는 부활되었다.

  • PDF

자외선조사(紫外線照射)에 의한 탁주효모(酵母)의 변이주육성(變異株育成)에 관한 연구 (제 2 보) -변이주(變異株)의 생리적성질(生理的性質)에 관하여 (Studies on the Induction of Available Mutants of Takju Yeast by UV light Irradiation (part 2) -On the Physiological Characteristics of the Mutants-)

  • 김찬조;오만진;김성렬
    • Applied Biological Chemistry
    • /
    • 제18권1호
    • /
    • pp.16-22
    • /
    • 1975
  • 우량탁주효모(優良濁酒酵母)로서 선정(選定)한 2모균주(母菌株)와 모균주(母菌株)에 자외선조사(紫外線照射)로서 얻은 3변이주(變異株)의 생리적(生理的) 성질(性質)을 검토(檢討)한 결과(結果)는 다음과 같다. 1) Alcohol 내성(耐性)은 모균(母菌)에 비(比)하여 3변이주(變異株)들이 약(弱)하였다. 2) 구연산 및 젖산내성(耐性)은 모균(母菌)에 비(比)하여 변이주(變異株) 인 30-81균주(菌株)는 강(强)하였으나 기타(其他) 2변이주(變異株)는 비슷 하였다. 3) 아질산염(亞窒酸鹽)의 내성(耐性)은 30-81균주(菌株)는 0.01%에서 생육(生育)하였으나 다른 2변이주(變異株)와 모균주(母菌株)는 0.1%에서 생육(生育)하였다. 4) Vitamin 요구성(要求性)에 있어서 2모균주(母菌株)와 3변이주(變異洙)는 Ca-pantothenate를 필수적(必須的)인 생육인자(生育因子)로 요구(要求)하였으며 변이주(變異洙)인 30-24균주(菌株)를 제외(除外)한 2변이주(變異株)와 2모균주(母菌株)들은 biotin을 자격적(刺激的) 생육인자(生育因子)로 요구(要求)하였다. 5) 변이주(變異株)의 번식력(繁殖力)은 모균(母菌)에 비(比)하여 약(弱)하여졌으며 특(特)히 30-81균주(菌株)가 약(弱)하였다. 6) 발효적온(醱酵適溫)은 2모균주(母菌株)는 $30-35^{\circ}C$였고 3변이주(變異株)는 $25{\sim}30^{\circ}C$ 였다. 7) 발효최적(醱酵最適) pH는 $5{\sim}6$으로 모균(母菌)과 변이주(變異株)간에 별차이(別差異)가 없었으며 30-81균주(菌株)는 중성(中性)으로 됨에 따라 타균주(他菌株)에 비(比)하여 발효력(醱酵力)이 저하(低下)되었다. 8) 20%이상(以上)의 당농도(糖濃度)에 대한 감수성(感受性)은 더욱 강(强)하였다._4H_2PO_4,\;(NH_4)_2SO_4$등이 량호(良好)하고 특히 유기질소원(有機窒素源)을 가(加)함으로써 Basal meaia에서 Inulase생산(生産)을 증가(增加)시켰다. 7. 당원(糖源)의 이용(利用)으로써는 Inulin이외(以外)의 제당(諸糖)은 Inulase생산(生産)에 영향(影響)을 미치지 않았다. 8. 금속(金屬) 염류(鹽類)의 이용(利用)은 KCI. $MgSO_4,\;FeSO_4$등이 Inulase생산(生産)을 증가(增加)시켰다.位間) 활성철함량(活性鐵含量)만으로는 불충분(不充分)하며 전철(全鐵) 대(對) 활성철(活性鐵)의 비(比) 그리고 점토(粘土) 및 미사함량(微砂含量)으로 측정(推定)한 활성철함량(活性鐵含量)을 기초(基礎)로 하여야 하며 망간의 집적층(集積層)은 전(全)망간 및 역환원성(易還元性) 망간 함량(含量)과 그들의 비(比)로 추정(推定)하여야 할 것이다.(酸) P은 후기수확(後期收穫)의 것에서 약간 높았다. 양송이중의 유리(遊離)아미노산(酸)으로는 alanine, serine, threonine glutamic acid를 위시(爲始)하여 12종(種)이 검출(檢出)되었다. 9) 본실험(本實驗)으로 재배상(栽培床) 퇴비(堆肥)의 숙성(熟成) 과정은 중온균(中溫菌)에 의한 암모니아의 생성(生成)과 탄수물화(炭水物化)의 분해에 이어 고온균(高溫菌)에 의한 단백질합성(蛋白質合成), 균경형성(菌經形成) 그리고 다실소(多室素) lignin 부식복합기(腐植複合畿)를 형성(形成)하고 이들 성분(成分)이 잔류(殘留)하는 탄수화물(炭水化物)과 함께 양송이의 영양원(營養源)을 이루게 되는 숙성기작(熟成機作)을 뒷받침 할 수 있었다.지 않았으나 ABA 처리(處理)는 이를 현저히 감소(減少)시켰다. 9) 초엽에 있어서 GA 처리(處理)는 초엽의 생장(生長) 및 chlorophyll 함량(含量)

  • PDF

근부환경(根部環境)에 따른 수도(水稻)의 영양생리적(營養生理的) 반응(反應)에 관(關)한 연구(硏究) (Studies on Nutrio-physiological Response of Rice Plant to Root Environment)

  • 박준규;김영섭;오왕근;박훈;시택문웅
    • 한국토양비료학회지
    • /
    • 제2권1호
    • /
    • pp.53-68
    • /
    • 1969
  • 생산력이 서로 다른 두 토양(土壤)에 유기물(有機物)을 첨가(添加)하여 근부(根部) 환경(環境)의 변화(變化)와 수도품종별(水稻品種別) 근(根)의 근부(根部) 환경(環境)에 대(對)한 반응(反應)을 육안(肉眼) 관찰(觀察)하고 양분흡수(養分吸收)를 조사(調査)하여 다음과 같은 결과(結果)를 얻었다. 1) 고위답토양(高位畓土壤)은 유기물(有機物)의 분해(分解)가 완만(緩慢)하며 분해평형점(分解平衡點)에서의 유기물(有機物) 함량(含量)이 높고 저위답토양(低位畓土壤)은 유기물(有機物)의 분해(分解)가 급속(急速)하며 분해평형점(分解平衡點)에 함량(含量)이 낮다. 2) 저위답토양(低位畓土壤)은 근(根)의 발육(發育)이 조해(阻害)되며 유기물(有機物) 첨가(添加)에 의(依)하여 더욱 조해(阻害)된다. 유기물(有機物)의 분해(分解)로 생기는 gas가 근(根) 주변(周邊)에 피막(被膜)을 형성(形成)하는데 기인(起因)하는것 같으며 이 결과(結果)로 T/R 값이 심히 떨어진다. 3) 품종간(品種間) 근부(根部) 환경(環境)에 반응력(反應力)이 현저하여 수원(水原) 82호(號)는 농림(農林) 25호(號) 보다 고위답(高位畓) 토양(土壤)에서는 흡수력(吸收力)이 강(强)하고 저위답토양(低位畓土壤)에서는 흡수력(吸收力)이 떨어진다. 4) 유기물(有機物) 첨가(添加)로 가리흡수(加里吸收)가 조해(阻害)되고 저위답토양(低位畓土壤)에서는 인산흡수(燐酸吸收)가 가장 조해(阻害)되는데 저위답토양(低位畓土壤)에 유기물(有機物)을 첨가(添加)하여 이 두 인자(因子)가 공역(共役)할 경우 양분흡수조해(養分吸收阻害)는 상승적(相乘的)으로 야기(惹起)된다. 5) 근(根)의 활력(活力)과 근수(根數), 지상부(地上部) 생육량(生育量) 및 근부생육량(根部生育量)과의 상관(相關)은 각각(各各) r=0.839, r=0.834, r=0.948로 모두 1%에서 유의성(有意性)이 있고 지상부(地上部)와 근부(根部)의 N.P.K. 흡수량(吸收量)과도 각각(各各), r=0.751, r=0.670, r=0.769, r=0.729, r=0.742, r=0.815로 5% 수준(水準)에서 유의성(有意性)이 있으며 근부(根部)의 생육량(生育量) 및 가리(加里)의 흡수량(吸收量)과의 상관계수(相關係數)가 가장 크다. 6) 근부환경(根部環境)이 나쁜곳에서는 좋은 곳에서보다 수도지상부(水稻地上部)의 질소농도(窒素濃度)는 낮고 근부(根部)는 훨씬 높아서 ammonia 과잉(過剩)의 해독(害毒)이 예상되며 인산(燐酸)과 가리(加里)는 양부위(兩部位)에서 모두 심히 낮으며 특히 간(稈)과 엽초(葉稍)에서 더욱 낮았다. 7) 근부환경(根部環境)이 나쁜 곳에서는 좋은곳에서보다 지상부(地上部)의 당(糖)과 전분(澱粉) 및 전탄수화물(全炭水化物) 함량(含量)이 높은데 반(反)하여 근부(根部)에서는 낮은데 환원당(還元糖)에서 더욱 심하여 근부(根部)에서는 당(糖)의 이상소모(異常消耗)가 예상되고 지상부(地上部)에서는 이에 대비하여 당(糖) 대사(代謝)가 해당방향(解糖方向)으로 주력(注力)함이 예상된다. 8) 근부환경(根部環境)이 나쁜곳에서는 근부(根部)에서 지상부(地上部)로 양분(養分)의 전류(轉流)가 극히 나빴다. 9) 근부환경(根部環境)이 나쁜곳에서는 황산(黃酸)의 함유율(含有率)이 높은데 엽신(葉身)에서 특히 높아 황산(黃酸) Ion에 의(依)한 ATP 생성(生成) 조해(阻害)가 예상되고 $P_2O_5/S$ 값은 고위답(高位畓) 유기물무시용구(有機物無施用區)의 1/5에 불과(不過)하여 P-S 비(比)가 관련된것 같다. 10) 근부환경(根部環境)이 나쁜곳에서는 지상부(地上部) 철(鐵)의 함량(含量)에는 차이(差異)가 없으나 Mn 함량(含量)은 상당히 적은 편이어서 $Fe/P_2O_5$ 값이 큰데 간(稈)과 엽초(葉稍)에서 7배(倍)나 되어 철인산(鐵燐酸) 침전에 의(依)한 통도(通導)의 기계적(機械的) 장해(障害)가 예상된다. 11) 토양중(土壤中) 조해성(阻害性) 인자(因子)는 유기물(有機物) 분해속도(分解速度)가 빠른 경우 악화(惡化)되어 근부기능기(根部機能基)를 조해(阻害)하여 양분(養分)을 조지(阻止)하고 체내(體內) Ion 평형(平衡)(N. P. K. S. Fe)을 교란(攪亂) 이상대사(異常代謝)(해당작용(解糖作用) A. T. P 생성약화(生成弱化))를 일으켜 전류(轉流)가 방해(防害)되고 따라서 각부위(各部位)의 생육(生育)의 불균형(不均衡)을 초래(招來)하는 연발생(連發生) 조해작용(阻害作用)이 순환가속(順換加速)하는 것으로 추정(推定)된다. 12) 고위답(高位畓)에서 질소(窒素)의 시용량(施用量)에 따른 근분포(根分布)를 조사(調査)한 결과(結果) 저위답(低位畓)은 표토부분(表土部分)에 분포(分布)하나 고위답(高位畓)에서는 심토(心土)에 분포비율(分布比率)이 많다. 질소(窒素) 무시용(無施用)은 지하(地下) 0~7cm 부위(部位)에 분포(分布) 비율(比率)이 크고 질소(窒素)를 시용(施用)하면 7~14cm 부위(部位)에 근분포(根分布) 비율(比率)이 많다. 전(全) 근중(根重)은 저위답(低位畓)에 비(比)하여 고위답(高位畓)에 많고 질소(窒素) 무시용(無施用)에 비(比)해서 질소(窒素) 10a 12kg 시용(施用)에서 많았다.

  • PDF