• Title/Summary/Keyword: Ammonium bromide

Search Result 131, Processing Time 0.025 seconds

A Study on the Formation of Octanenitrile as a Precursor for Synthesis of Carboxylic Acid (카르복실산 합성전구체(合成前驅體)로서의 옥탄니트릴의 생성반응(生成反應)에 관(關한) 연구(硏究))

  • Kim, Yong-In;Oh, Yang-Hwan;Kim, Kwang-Sik;Lee, Dong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.29-37
    • /
    • 1989
  • Using the quarternary ammonium salts as phase transfer catalyst, the nucleophilic substitution reaction of 1-chlorooctane with sodium-cyanide was investigate kinetically with respect to the formation of octanenitrile. The product was analyzed with gas chromatograph, and quantity of octanenitrile was measured. The reaction condition was considered by the effect of the reaction temperature, of the species and the amount of catalyst, of the speed of strirring, and of the concentration of reactants. The reaction was carried out in the first order on the concentration of 1-chlorooctane and sodium cyanide, respectively. The over-all order was 2nd. The activation energies for the nucleophilic substitution reaction of 1-chlorooctane and 1-bromooctane under tetrabutylammonium hydrogen-sulfate were calculated as 2.05 and 10.08kcal/mol, respectively. The effect of various caltalysts was decreased in the order of tetrabutylammonium bromide, terabutylammonium, tetrabutylammonium hydrogensulfate, and tetrabutylammonium iodide. The reaction rate was dependent on the concentration of sodium-cyanide dissolved in the aqueous phase, and the good result was shown when the mol ratio between 1-chlorooctane and sodium cyanide was one per three.

Preparation and Characterization of CdSe nanoparticle for Solar Cell application (태양전지용 CdSe 나노입자의 합성)

  • Kim, Shin-Ho;Park, Myoung-Guk;Lee, Bo-Ram;Lee, Hyun-Ju;Kim, Yang-Do
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.318-321
    • /
    • 2007
  • CdSe nanoparticles were prepared by chemical solution methods using $CdCl_2{\cdot}4H_2O$ (or $Cd(NO_3)_ 2{\cdot}4H_2O$) and $Na_2SeSO_3$. The characteristics of CdSe nanoparticles were controlled by the react ion time, reaction temperature and reaction method as well as the surfactants. Cetyltrimethyl ammonium bromide(CTAB) was used as a capping agent to control the chemical reactions in aqueous solution. Polyvinylalcohol(PVA) was used as a templet in sono-chemical method. CdSe nanoparticles synthesized in aqueous solution showed homogeneous size distribution with relatively stable surface. CdSe nanoparticles synthesized in non-aqueous solution containing diethanolamine(DEA) showed the structure transformation from cubic to hexagonal as the reduction temperature increased from 80 to $160^{\circ}C$. Core shell CdSe was synthesized by sono-chemical method. Characteristics of CdSe nanoparticles were analyzed using transmission electron microscopy(TEM), x-ray photoelectron spectroscopy(XPS), x-ray diffraction(XRD), UV-Vis absorption spectra, fourier transform infrared spectroscopy(FT-IR) and photoluminescence spectra spectroscopy(PL). This paper presents simple routes to prepare CdSe nanoparticles for solar cell applications.

  • PDF

Recovery of Levafix brilliant red E-4BA and Levafix brilliant red E-6BA from aqueous solution by supported liquid membrane

  • Muthuraman, G.;Sathya, M.;Soniya, M.;Elumalai, S.
    • Membrane and Water Treatment
    • /
    • v.4 no.4
    • /
    • pp.277-291
    • /
    • 2013
  • The transport and recovery of Levafix brilliant red E-4BA and Levafix brilliant red E-6BA were investigated using polytetrafluoroethylene (PTFE) fiber based supported liquid membrane containing tetra butyl ammonium bromide (TBAB) in coconut oil as a carrier. The influencing parameters studied are: pH of the feed solution, concentration of dye in the feed solution, extractant concentration, and various kind of stripping agent, rate of stirring, time of transport, reusability of membrane and stability of membrane. Increase in TBAB concentration inside the membrane enhances the flux with its maximum value at $1.553{\times}10^{-4}$ M TBAB. Further increase in the concentration of TBAB leads to decreased rate of transport due to increase in viscosity of membrane liquid. The optimum conditions for dye transport are: pH of feed ($7{\pm}0.1$), $1.553{\times}10^{-4}$ M extractant concentration, 350 rpm for stirring, $4.9{\times}10^{-1}$ M potassium hydrogen phthalate as a stripping solution, the time of transport 6 h. It was noticed that flux values were increased with increasing dye concentration in the feed phase. Applying this study to textile wastewater, dyes were transported up to 98% in 6 h. This recovery technique is rewarding to environment and economic.

Identification of Molecular Signatures from Different Vaccine Adjuvants in Chicken by Integrative Analysis of Microarray Data

  • Kim, Duk Kyung;Won, Kyeong Hye;Moon, Seung Hyun;Lee, Hak-Kyo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.1044-1051
    • /
    • 2016
  • The present study compared the differential functions of two groups of adjuvants, Montanide incomplete Seppic adjuvant (ISA) series and Quil A, cholesterol, dimethyl dioctadecyl ammonium bromide, and Carbopol (QCDC) formulations, in chicken by analyzing published microarray data associated with each type of vaccine adjuvants. In the biological function analysis for differentially expressed genes altered by two different adjuvant groups, ISA series and QCDC formulations showed differential effects when chickens were immunized with a recombinant immunogenic protein of Eimeria. Among the biological functions, six categories were modified in both adjuvant types. However, with respect to "Response to stimulus", no biological process was modified by the two adjuvant groups at the same time. The QCDC adjuvants showed effects on the biological processes (BPs) including the innate immune response and the immune response to the external stimulus such as toxin and bacterium, while the ISA adjuvants modified the BPs to regulate cell movement and the response to stress. In pathway analysis, ISA adjuvants altered the genes involved in the functions related with cell junctions and the elimination of exogenous and endogenous macromolecules. The analysis in the present study could contribute to the development of precise adjuvants based on molecular signatures related with their immunological functions.

Adsorption Characteristics of As and Se Ions by HTMAB Modified Anthracite (HTMAB로 표면처리된 안트라사이트에 의한 비소 및 셀렌 이온의 흡착 특성)

  • Kim, Jeung-Bea
    • Journal of Environmental Science International
    • /
    • v.27 no.3
    • /
    • pp.167-177
    • /
    • 2018
  • The removal characteristics of As and Se ions from aqueous solution by hexadecyl trimethyl ammonium bromide (HTMAB) modified anthracite (HTMAB-AT) were investigated under various conditions of contact time, pH and temperature. When the pH is 6, the zeta potential value of anthracite (AT) is -24 mV and on the other hand, the zeta potential value of the HTMAB-AT is +44 mV. It can be seen that the overall increase of about 60 mV. Increasing the (+) potential value indicates that the surface of the adsorbent had a stronger positive charge, so adsorption for the anion metal was increased. The isotherm data was well described by Langmuir and Temkin isotherm model. The maximum adsorption capacity was found to be 7.81 and 6.89 mg/g for As and Se ions from the Langmuir isotherm model at 298 K, respectively. The kinetic data was tested using pseudo first and pseudo second order models. The results indicated that adsorption fitted well with the pseudo second order kinetic model. The mechanism of the adsorption process showed that adsorption was dependent on intra particle diffusion model according to two step diffusion. The thermodynamic parameters(${\Delta}G^{\circ}$, ${\Delta}H^{\circ}$, and ${\Delta}S^{\circ}$) were also determined using the equilibrium constant value obtained at different temperatures. The thermodynamic parameters indicated that the adsorption process was physisorption, and also an endothermic and spontaneous process.

Formation of CH3NH3PbBr3 Perovskite Nanocubes without Surfactant and Their Optical Properties

  • Kirakosyan, Artavazd;Yun, Seokjin;Kim, Deul;Choi, Jihoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.79-85
    • /
    • 2018
  • We systematically investigated the optical properties of sub-micron sized methylammonium lead tribromide ($CH_3NH_3PbBr_3$) cubes in the range of 100 to 700 nm, which were prepared by a surfactant-free precipitation method. We found that despite the strong absorbance, their photoluminescence quantum yield (PLQY) is very low as 0.009~0.011 % for whole range of sizes. Surfactant-free synthesis approach results in nanocubes that has no surface passivating reagents (e.g. surfactants) on their surface. As-prepared particles contain a large number of surface defects that may cause the low PLQY. The role of the surface defects were investigated in their photoluminescence decay process, which can be correlated with the particle size. Larger particles are characterized by a slower decay rate compared to smaller particles due to a large number of surface defects in the smaller particles that trap more excitons in the fluorescence decay process. These experimental results provide new insights into the fundamental relationship between surface state and optical properties.

Enhanced Activity of Phenylalanine Ammonia Lyase in Permeabilised Recombinant E. coli by Response Surface Method

  • Cui, Jian-dong;Li, Yan;Jia, Shi-Ru
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.494-499
    • /
    • 2009
  • To improve phenylalanine ammonia lyase (E.C.4.3.1.5-PAL) activity in recombinant Escherichia coli, Some approaches for improving phenylalanine ammonia lyase (PAL) activity in recombinant E. coli were developed following preliminary studies by means of response surface method. The results shown that permeabilization with combination of Triton X-100, cetyl trimethyl ammonium bromide (CTAB), and acetone enriched cellular recombinant PAL activity significantly, which improved over 10-fold as compared with the control (untreat cell), as high as 181.37 U/g. The optimum values for the tested variables were Triton X-100 0.108 g/L, CTAB 0.15 g/L, and acetone 45.2%(v/v). Furthermore, a second-order model equation was suggested and then validated experimentally. It was indicated that addition of surfactants and organic solvents made the cells more permeable and therefore allowed easier access of the substrate to the enzyme and excretion of the product, which increased the rate of transport of L-phenylalanine and trans-cinnamic acids. These improved methods of PAL activity enrichment could serve as a rich enzyme source, especially in the biosynthesis of L-phenylalanine.

Preparation of Poly(vinyl acetate)/Clay and Poly(vinyl acetate)/ Poly(vinyl alcohol)/Clay Microspheres

  • Jung Hye-Min;Lee Eun-Mi;Ji Byung-Chul;Sohn Sung-Ok;Ghim Han-Do;Cho Hyun-Ju;Han Young-A;Choi Jin-Hyun;Yun Jae-Deuk;Yeum Jeong-Hyun
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.229-234
    • /
    • 2006
  • Poly(vinyl acetate) (PVAc)/poly(vinyl alcohol) (PVA)/montmorillonite (MMT) clay nanocomposite microspheres with a core/shell structure have been developed via a suspension polymerization approach. In order to prepare the PVAc/ MMT and PVAc/PVA/MMT nanocomposite microspheres, which are promising precursor of PVA/MMT nanocomposite microspheres, suspension polymerization of vinyl acetate with organophilic MMT and heterogeneous saponification were conducted. A quaternary ammonium salt, cetyltrimethylammonium bromide, was mixed with the MMT in the monomer phase prior to the suspension polymerization. The rate of conversion decreased with an increase in MMT concentration. The incorporation of MMT into the PVAc was verified by FT-IR spectroscopy. Organic vinyl acetate monomers were intercalated into the interlayer regions of organophilic clay hosts and followed by suspension polymerization. Partially saponified PVA/MMT nanocomposite microspheres with a core/shell structure were successfully prepared by heterogeneous saponification.

Immunoliposomes Carrying Plasmid DNA : Preparation and Characterization

  • Kim, Na-Hyung;Park, Hyo-Min;Chung, Soo-Yeon;Go, Eun-Jung;Lee , Hwa-Jeong
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1263-1269
    • /
    • 2004
  • The objective of this study was to characterize immunoliposomes carrying plasmid DNA with optimal encapsulation efficiency and antibody density. Plasmid DNA was encapsulated by the freezing/thawing method into liposomes composed of POPC (1-palmitoyl-2-oleoyl-sn-glycerol- 3-phosphocholine), DDAB (didodecyl dimethyl ammonium bromide), DSPE-PEG 2000 (distearoyl phosphatidyl ethanolamine polyethylene glycol 2000) and DSPE-PEG 2000-maleimide. The liposomes carrying plasmid DNA were extruded through two stacked polycarbonate filters, of different pore size, to control the liposome size. Then, rat IgG molecules were conjugated to the liposomes. The immunoliposomes containing plasmid DNA were separated from the free plasmid DNA and unconjugated IgG by Sepharose CL-4B column chromatography. The DNA amount encapsulated was affected by DDAB (cationic lipid) concentration, the initial amount of plasmid DNA between 10 ${\mu}g$ and 200 ${\mu}g$, the total lipid amount and plasmid DNA size, but not significantly by liposome size. By varying the ratio of DSPE-PEG 2000-maleimide to IgG, the number of IgG molecules per liposome was changed significantly.

An Efficient One-Pot Strategies for the Synthesis of [1,3] Oxazine Derivatives ([1,3] Oxazine 유도체 합성을 위한 효율적인 One-Pot 합성)

  • Sapkal, Suryakant B.;Shelke, Kiran F.;Shingate, Bapurao B.;Shingare, Murlidhar S.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.4
    • /
    • pp.437-442
    • /
    • 2010
  • Sodium hydrogen sulphate ($NaHSO_4$), n-tetra butyl ammonium bromide (TBAB) as a phase transfer catalyst (PTC) in water, and 1-butyl-3-methyl imidazolium hydrogen sulphate [bmim]$HSO_4$ as ionic liquid (IL) has been used as a mild reaction promoter for the cyclocondensation of formalin, ${\beta}$-naphthol and aromatic amines to afford respective 2,3-dihydro-2-phenyl-1H-naphtho-[1,2-e] [1,3] oxazine derivatives. The present protocols are greener, high yielding and involved the nonchromatographic isolation procedure.