• Title/Summary/Keyword: Ammonia-water mixture

Search Result 63, Processing Time 0.022 seconds

Chemical Mechanisms and Process Parameters of Flue Gas Cleaning by Electron beam (전자빔에 의한 배연가스 정화기술의 화학반응 메카니즘에 대하여)

  • Choe, Gap-Seok;Choe, Yeon-Seok;Kim, Han-Seok
    • 연구논문집
    • /
    • s.23
    • /
    • pp.93-107
    • /
    • 1993
  • The chemistry and performance characteristics of the EBDS process have been introduced, in which experimental results from laboratory, test plant, and pilot plant studies agree very well and can be understood from detailed kinetic models. The parametric dependencies of the NOx and $SO_2$, removal yields on the input conditions have been discussed and formulated quantitatively. The process is best suited for flue gas with high $SO_2$, loadings. The operation conditions, such as dose, ammonia, and water additions, can be adjusted fast upon load changes. The process works waste water free and the major product is a mixture of ammonium nitrate and sulfate that can be used as fertilizer. The up-date results show that the EBDS technology is safe and competitive with other already well-established technologies. Due to these interesting features, the electron beam process has gained much international recognition. Demonstration units of 100MW have been proposed in the United States and Japan. Further pilot plants are under construction in Poland and China, countries that make abundant use of highsulfur coal. Additional research activities are under way to further improve the energy efficiency of process, and accelerator prices have been decreasing during the past 10 years. So the EBDS process has a good chance to start a new generation of emission-control technology.

  • PDF

Synthesis of Nanorod g-C3N3/Ag3PO4 Composites and Photocatalytic Activity for Removing Organic Dyes under Visible Light Condition

  • Se Hwan Park;Jeong Won Ko;Weon Bae Ko
    • Elastomers and Composites
    • /
    • v.59 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Nanorod graphitic carbon nitride (g-C3N4) was synthesized by reacting melamine (C3H6N6) with trithiocyanuric acid (C3H3N3S3) in distilled water for 10 h at room temperature. The resulting mixture was calcined at 550℃ for 2 h in an electric furnace under an air atmosphere. Nanorod g-C3N4/Ag3PO4 composites were prepared by adding nanorod graphitic carbon nitride (g-C3N4) powder, silver nitrate (AgNO3), ammonia (NH3·H2O, 25.0-30.0%), and sodium hydrogen phosphate (Na3HPO4) to distilled water. The samples were characterized via X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The photocatalytic activities of the nanorod g-C3N4/Ag3PO4 composites were demonstrated via the degradation of organic dyes, such as methylene blue and methyl orange, under blue light-emitting diode irradiation and evaluated using UV-vis spectrophotometry.

The Effect of Oregano and Cinnamon Essential Oils on Fermentation Quality and Aerobic Stability of Field Pea Silages

  • Soycan-Onenc, Sibel;Koc, Fisun;Coskuntuna, Levent;Ozduven, M. Levent;Gumus, Tuncay
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1281-1287
    • /
    • 2015
  • This study was performed to determine the effect of field pea silages which were the organic acid (OA) alternative of oregano and cinnamon essential oils on fermentation quality and aerobic stability. Whole crop pea was harvested at full pod stage and wilted in the laboratory at the 48 h. The chopped pea was mixed and divided into equal portions allocated to five groups: CON (non-treated), distilled water, denoted as control group; OA group, a mixture of 60% formic acid, 20% sodium formate and 20% water applied at a rate of 5 g/kg fresh forage (Silofarm Liquid, Farmavet); origanum (ORE) group, Origanum onites essential oil at 400 mg/kg fresh forage; cinnamon (CIN) group, cinnamon essential oil at 400 mg/kg fresh forage; origanum+cinnamon (ORECIN) group, a mixture of ORE and CIN applied at an equal rate of 400 mg/kg fresh forage. Cinnamon decreased acetic acid (AA), ammonia nitrogen ($NH_3-N$) and weight loss (WL) at the end of 60 days silage. Crude protein (CP) and dry matter (DM) increased by cinnamon essential oil. Yeasts were not detected in any treatments, including the control, after 7 days of air exposure. The $CO_2$ amount decreased and the formation mold was inhibited in the aerobic period by the addition of cinnamon oil. Oregano did not show a similar effect, but when it was used with cinnamon, it showed synergic effect on AA and during aerobic period, it showed antagonistic effect on mold formation and DM losses. It was found in this study that cinnamon can be an alternative to organic acids.

A Study on the manufacture of caramel from under grade wheat flour (등외소맥분(等外小麥粉)에서 Caramel제조(製造) 연구(硏究))

  • Shin, Jai-Doo
    • Applied Biological Chemistry
    • /
    • v.21 no.1
    • /
    • pp.35-39
    • /
    • 1978
  • 1) Caramel and original soybean sauce was obtained from under grade wheat flour. 2) Mixture of under grade wheat flour and ammonium Chloride or HCl was parched. Parch substance were mixed with water, and then were filtrated. This filtrated liquid is liquid of dextrin. The residue of the filtrated substance was contained protein and others. Liquid of dextrin were treated with HCl until reaction of $I_2$ is colorless. Liquid of dextrin was caramelized. The original soybean sause was obtained by the hydrolysis of residue. 3) Parching 200g of under grade wheat flour with 7g of ammonium chloride under $140^{\circ}C$. for 90mins. and then add about 200ml of water to it. About 150ml. of dextrin soln's can be obtain after filtration. 4) Caramelizing 150ml. of dextrin soln's was treated with liq. ammonia at $120^{\circ}C$ for 270mins. under $pH\;5{\sim}6$. it was possible to obtain 95g of $24^{\circ}B\acute{e}$ caramel. 5) When 25g of residue was hydrolysised with 75ml. of 18% HCl for 8hrs. boiling. it was possible to obtain 55ml. of $25^{\circ}B\acute{e}$ original soybean sauce. It is contain 2.20% of nitrogen.

  • PDF

Characteristics of Rice Hulls, Sawdust, Wood Shavings and Mixture of Sawdust and Wood Shavings, and Their Usefulness According to the Pen Location for Hanwoo Cattle

  • Ahn, Gyu Chul;Jang, Sun Sik;Kwak, Hyung Jun;Lee, Sang Rak;Oh, Young Kyun;Park, Keun Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.4
    • /
    • pp.599-605
    • /
    • 2016
  • In this study, two experiments were conducted to investigate the physicochemical characteristics (Exp. I) of bedding materials such as rice hulls (RH), sawdust (SD), wood shavings (WS) and sawdust+wood shavings (S+W; 1:1 in volume), and utilization of these beddings except RH (Exp. II) for rearing beef cattle. In Exp. I, the distribution of particle size (%) with $250{\mu}m$ and below $250{\mu}m$ was greater (p<0.05) in SD (30.4) than RH (4.4), WS (18.8) and S+W (20.1). Bulk density ($kg/m^3$) of bedding materials was directly proportional to the percentage of $250{\mu}m$ and below $250{\mu}m$ particles, 178, 46, 112, and 88 for SD, WD, S+W and RH, respectively. Water absorption rate (%) after submersion in water for 24 h was higher (p<0.05) in WS (540.2) compared to SD (270.2), S+W (368.2). The S+W had an intermediate value of the absorption rate between SD and WS, but had an outstanding durability of water absorption capacity. Moisture evaporation rate (%) for 12 h was higher (p<0.05) in WS (75.4) than SD (70.5), S+W (72.2) and RH (57.8). Average ammonia emission ($mg/m^2/h$) for 36 h was higher (p<0.05) in RH (3.15) than SD (1.70), WS (1.63), and S+W (1.73). In Exp. II, thirty six Hanwoo cows were allocated in 9 pens with one side on feed bunk side (Side A) and another side equipped with water supply (Side B) for 3 weeks with duplicated periods. Average moisture concentrations (%) of beddings were higher (p<0.05) in WS (side A, 65.7; side B, 57.9) than SD (side A, 62.5; side B, 52.2) and S+W (side A, 61.6; side B, 50.7). Regardless of types of beddings, moisture concentrations (%) of beddings within a pen were lower (p<0.05) at side B than A, implying longer period of utilization. These results suggest that using S+W would be a better choice than SD or WS alone, considering physicochemical characteristics and economics, and RH is not a suitable material as a bedding for beef cattle.

Numerical Study for the Design of Biogas-fired Low Emission Cyclone Incinerator (바이오 가스 소각용 저공해 사이클론 소각기 개발을 위한 수치 해석적 연구)

  • 전영남;김시욱;백원석
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.5
    • /
    • pp.401-410
    • /
    • 2002
  • Concerns for energy conservation, environmental pollution, and the fact that organic wastes account for a major portion of our waste materials, have created the interest of biogas, which usually contains about 60 to 70 percent methane, 30 to 40 percent carbon dioxide, and other gases, including ammonia, hydrogen sulfide, mercaptans and other noxious gases. Cyclone combustors are used for homing a wide range of fuels such as low calorific value gas, waste water, sludge. coal, etc. The 3-dimensional swirling flow, combustion and emission in a tangential inlet cyclone incinerator under different inlet conditions are simulated using a standard k-s turbulence model and ESCRS (Extended Simple Chemically-Reacting System) model. The commercial code Phoenics Ver.3.4 was used for the present work. The main parameters considered in this work are inlet velocity and air to fuel ratio. The results showed that the change of operating conditions had an influence on the shape and size of recirculation zones, mixture fraction and axial velocity which are important factors for combustion efficiency and emission behavior. The application of this kind of computer program seams to be promising as a potential tool for the optimum design of a cyclone combustor with low emission.

Mechanical Properties Observation of Ce-TZP Ceramics by Quantity Change of CeO2 (CeO2의 첨가량 변화에 따른 세리아 안정화 지르코니아 세라믹스의 기계적 특성 관찰)

  • Kang, Jong-Bong
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.439-444
    • /
    • 2010
  • The usual ceramic process of mixing and milling in state of oxide of $ZrO_2$ and $CeO_2$ was adopted in wet process to manufacture Ce-TZP in this study. The maximum dispersion point of every slurry manufactured with mixture of $ZrO_2$ and $CeO_2$ was neat at pH10. The stable slurry in average particle size of 90 nm can be manufactured when it is dispersed with use of ammonia water and polycarboxylic acid ammonium. The sintered Ce-TZP ceramics manufactured with addition of $CeO_2$ less than 10 mol% was progressed to the fracture of specimen due to the monoclinic phase existence more than 30% at the room temperature. More than 99% of tetragonal phase was created for the sintered body with addition of $CeO_2$ beyond 18 mol%, but the mechanical property degrade on the entire specimen was brought due to the $CeO_2$ existing above 3%. Consequently, the optimal Ce-TZP combined in oxide state was identified in 16 mol% of $CeO_2$ contents.

Effect of Artificial Zeolite on Fermentation and Emission of Ammonia and Methane during Animal Waste Composting (인공제올라이트 처리가 가축분 퇴비의 발효 및 암모니아, 메탄가스 발생에 비치는 영향)

  • Lee, Deog-Bae;Kim, Jong-Gu;Lee, Kyung-Bo;Lee, Sang-Bok;Kim, Jae-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.5
    • /
    • pp.361-368
    • /
    • 2000
  • This study was carried out to investigate the influence of artificial zeolite on the change of temperature, gas emission, water content and chemical properties during the composting process with the mixture of animal feces, broken bark and extruded rice hull. Artificial zeolite was added 0, 0.5, 1, 3 and 5% volume of the raw composting material, and proceeded 1.2m every day with mobile stacking escalator. Temperature was increased, and water content was decreased in the composting pile by addition of artificial zeolite. This caused to accelerate decomposition of organic matter during composting. $NH_3$ was emitted the highest at 6th day after stacking, then decreased gradually. And addition of artificial zeolite caused to decrease greatly in $NH_3$ emission from composting pile. As result of this, content of nitrogen in the compost was increased by addition of artificial zeolite. Emission of $CH_4$ was the highest at early stacking stage, and that was decreased drastically at 8th day. Emission of $CH_4$ was also decreased greatly by addition of artificial zeolite at 5th days after stacking. It may be resulted from adsorption of $CH_4$ into the molecular sieve structure of artificial zeolite and low water content by high temperature fermentation.

  • PDF

Influence of denitrified biofloc water on the survival rate and physiological characteristics of Pacific white shrimp juveniles, Litopenaeus vannamei (바이오플락 탈질수가 어린 흰다리새우, Litopenaeus vannamei의 생존율 및 생리특성에 미치는 영향)

  • Kim, Su-Kyoung;Jang, Jin Woo;Jo, Yong Rok;Kim, Jun-Hwan;Kim, Su Kyoung
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.2
    • /
    • pp.136-143
    • /
    • 2019
  • This study investigates the effect of denitrified biofloc water on changes in the water quality parameters and the physiological characteristics of shrimps. Biofloc rearing water contains a large number of microorganisms and can rapidly stabilize the water quality and energy saving if reusable due to high water temperatures. Rearing water contain floating bacteria with both aerobic and anaerobic bacteria. Therefore, when the carbon source is added in limited air supply, the anaerobic state is activated and the denitrification process is possible. In this study, the denitrification water had the following properties: ammonia (6.9 mg L-1), nitrite (0.3 mg L-1), nitrate concentration (9.2 mg L-1), high pH (8.42) and alkalinity (590 mg L-1). The experimental group consisted of seawater (SW, control), a mixture of Seawater and denitrified biofloc water (DNW) in the ratio of 3:1, 1:1 and DNW only. All experiments were done in triplicate. As a result, the survival rate never changed even when 100% of the denitrification water was utilized. However, a body fluid analysis showed that creatine and BUN were increased due to index of stress and the tissue damage resulting from the high denitrified water content. Body fluid ions (Na+, K+, and Cl-) significantly decreased as the denitrified water content increased. It was recommended that the denitrification water be mixed with a certain ratio (less than 50%) in the future as it may affect the osmotic pressure control in shrimps.

A Study on Changes in Pore Water Quality of Polluted Sediment due to Mixing Ratio of Granulated Coal Ash (석탄회 조립물 혼합비율에 따른 오염 퇴적물의 간극수 수질 변화에 관한 연구)

  • Lee, In-Cheol;Woo, Hee-Eun;Kim, Kyeongmin;Lee, Jun-Ho;Kim, Kyunghoi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.5
    • /
    • pp.201-206
    • /
    • 2018
  • This study investigated the changes in pore water quality of polluted sediment by mixing ratio of granulated coal ash. The mesocosm experiments were carried out with 0%, 10%, 30% and 50%, respectively, of the material mixture ratio relative to the sediments. According to the results of the experiments, pH increased depending on the mixing ratio. Phosphate and ammonia concentrations were significantly decreased in the mixing ratio of 30% and 50% compared to the control (p < 0.05). The concentration of hydrogen sulfide was reduced by 72% at the mixing ratio of 10%, and it was not detected at the mixing ratio of 30% and 50%. This study was confirmed that granulated coal ash can change the pore water quality of polluted sediments in proportion to the amount of material. However, the effect of the mixing ratio between 30% and 50% was not significantly different, thus it is concluded that mixing of 30% of the volume of the sediment is economically feasible.