• 제목/요약/키워드: Ammonia-producing Bacteria

검색결과 23건 처리시간 0.021초

Hybrid type 반응조에서의 혐기성 슬러지의 탈질(I): 초산을 기질로 사용한 경우 (Denitrification of Anaerobic Sludge in Hybrid type Anaerobic Reactor(I): Acetate as Substrate)

  • 신항식;김구용;이채영
    • 상하수도학회지
    • /
    • 제13권4호
    • /
    • pp.35-44
    • /
    • 1999
  • In this study, it was attempted to remove nitrate and carbon in a single-stage reactor using acetate as substrate. Hybrid type upflow sludge baffled filter reactor was adopted using anaerobic sludge. Sludge bed in the bottom of reactor was intended to remove carbon and nitrate by denitrification and methanogenesis. And floating media in the upper part of reactor were intended to remove remaining carbon which was not removed due to the inhibition of nitrogen oxide on methane producing bacteria. The reactor removed over 96% of COD and most of nitrate with volumetric loading rate of $4.0kgCOD/m^3{\cdot}day$, hydraulic retention time of 24hr, 4,000mgCOD/L, and $266mgNO_3-N/L$. Nitrate in anaerobic sludge was converted to nitrogen gas(denitrification) or ammonia (ammonification) according to pH of influent, COD removal efficiency was easily affected by the change of volumetric loading rates and nitrate concentration. And when influent pH was about 4.7, most nitrate changed to ammonia while when influent pH was about 6.8~7.0, most nitrate denitrified independent of $COD/NO_3-N$ ratio. Most granules were gray and a few were black. In gray-colored granule, black inner side was covered with gray substance and SEM illustrated Methanoccoci type microorganisms which were compact spherical shape. Anaerobic filter removed residual COD effectively which was left in sludge bed due to the inhibition of nitrogen oxide.

  • PDF

Development of a novel endolysin, PanLys.1, for the specific inhibition of Peptostreptococcus anaerobius

  • Joonbeom Moon;Hanbeen Kim;Dongseok Lee;Jakyeom Seo
    • Animal Bioscience
    • /
    • 제36권8호
    • /
    • pp.1285-1292
    • /
    • 2023
  • Objective: The objective of this study was to develop a novel endolysin (PanLys.1) for the specific killing of the ruminal hyper-ammonia-producing bacterium Peptostreptococcus anaerobius (P. anaerobius). Methods: Whole genome sequences of P. anaerobius strains and related bacteriophages were collected from the National Center for Biotechnology Information database, and the candidate gene for PanLys.1 was isolated based on amino acid sequences and conserved domain database (CDD) analysis. The gene was overexpressed using a pET system in Escherichia coli BL21 (DE3). The lytic activity of PanLys.1 was evaluated under various conditions (dosage, pH, temperature, NaCl, and metal ions) to determine the optimal lytic activity conditions. Finally, the killing activity of PanLys.1 against P. anaerobius was confirmed using an in vitro rumen fermentation system. Results: CDD analysis showed that PanLys.1 has a modular design with a catalytic domain, amidase-2, at the N-terminal, and a cell wall binding domain, from the CW-7 superfamily, at the C-terminal. The lytic activity of PanLys.1 against P. anaerobius was the highest at pH 8.0 (p<0.05) and was maintained at 37℃ to 45℃, and 0 to 250 mM NaCl. The activity of PanLys.1 significantly decreased (p<0.05) after Mn2+ or Zn2+ treatment. The relative abundance of P. anaerobius did not decrease after administration PanLys.1 under in vitro rumen conditions. Conclusion: The application of PanLys.1 to modulate P. anaerobius in the rumen might not be feasible because its lytic activity was not observed in in vitro rumen system.

Natural Products as Manipulators of Rumen Fermentation

  • Wallace, R. John;McEwan, Neil R.;McIntosh, Freda M.;Teferedegne, Belete;Newbold, C. James
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권10호
    • /
    • pp.1458-1468
    • /
    • 2002
  • There is increasing interest in exploiting natural products as feed additives to solve problems in animal nutrition and livestock production. Essential oils and saponins are two types of plant secondary compounds that hold promise as natural feed additives for ruminants. This paper describes recent advances in research into these additives. The research has generally concentrated on protein metabolism. Dietary essential oils caused rates of NH$_3$ production from amino acids in ruminal fluid taken from sheep and cattle receiving the oils to decrease, yet proteinase and peptidase activities were unchanged. Hyper-ammonia-producing (HAP) bacteria were the most sensitive of ruminal bacteria to essential oils in pure culture. Essential oils also slowed colonisation and digestion of some feedstuffs. Ruminobacter amylophilus may be a key organism in mediating these effects. Saponin-containing plants and their extracts appear to be useful as a means of suppressing the bacteriolytic activity of rumen ciliate protozoa and thereby enhancing total microbial protein flow from the rumen. The effects of some saponins seems to be transient, which may stem from the hydrolysis of saponins to their corresponding sapogenin aglycones, which are much less toxic to protozoa. Saponins also have selective antibacterial effects which may prove useful in, for example, controlling starch digestion. These studies illustrate that plant secondary compounds, of which essential oils and saponins comprise a small proportion, have great potential as 'natural' manipulators of rumen fermentation, to the potential benefit of the farmer and the environment.

Effect of γ-aminobutyric acid producing bacteria on in vitro rumen fermentation, growth performance, and meat quality of Hanwoo steers

  • Mamuad, Lovelia L.;Kim, Seon Ho;Ku, Min Jung;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권7호
    • /
    • pp.1087-1095
    • /
    • 2020
  • Objective: The present study aimed to evaluate the effects of γ-aminobutyric acid (GABA)-producing bacteria (GPB) on in vitro rumen fermentation and on the growth performance and meat quality of Hanwoo steers. Methods: The effects of GPB (Lactobacillus brevis YM 3-30)-produced and commercially available GABA were investigated using in vitro rumen fermentation. Using soybean meal as a substrate, either GPB-produced or commercially available GABA were added to the in vitro rumen fermentation bottles, as follows: control, no additive; T1, 2 g/L GPB; T2, 5 g/L GPB; T3, 2 g/L autoclaved GPB; T4, 5 g/L autoclaved GPB; T5, 2 g/L GABA; and T6, 5 g/L GABA. In addition, 27 Hanwoo steers (602.06±10.13 kg) were subjected to a 129-day feeding trial, during which they were fed daily with a commercially available total mixed ration that was supplemented with different amounts of GPB-produced GABA (control, no additive; T1, 2 g/L GPB; T2, 5 g/L GPB). The degree of marbling was assessed using the nine-point beef marbling standard while endotoxin was analyzed using a Chromo-Limulus amebocyte lysate test. Results: In regard to in vitro rumen fermentation, the addition of GPB-produced GABA failed to significantly affect pH or total gas production but did increase the ammonia nitrogen (NH3-N) concentration (p<0.05) and reduce total biogenic amines (p<0.05). Animals fed the GPB-produced GABA diet exhibited significantly lower levels of blood endotoxins than control animals and yielded comparable average daily gain, feed conversion ratio, and beef marbling scores. Conclusion: The addition of GPB improved in vitro fermentation by reducing biogenic amine production and by increasing both antioxidant activity and NH3-N production. Moreover, it also reduced the blood endotoxin levels of Hanwoo steers.

고농도 암모니아를 함유한 돈사폐수의 고율혐기성 소화시 메탄균의 활성연구 (Activity of Methanogens in the High Rate Anaerobic Digestion of Swine Wastewater Containing High Ammonia)

  • 오세은;이채영
    • 대한환경공학회지
    • /
    • 제22권5호
    • /
    • pp.981-987
    • /
    • 2000
  • 축산분뇨에 대한 처리도 및 암모니아에 대한 독성을 평가하기 위하여 UASB 반응조를 운전하였다. 반응조의 운전결과 유기부하량 $2.6kg\;COD/m^3.day$과 수리학적 체류시간 3일에서 70%의 COD 제거효율을 얻을 수 있었으나, 유기부하량과 수리학적 체류시간을 각각 $7kg\;COD/m^3.day$과 2일로 유지한 경우 COD 제거율이 급격히 감소되었다. 반응조 슬러지의 유리암모니아에 대한 독성을 평가하기 위하여 수행된 회분식 실험 결과, 각 단계별 슬러지의 메탄균 활성은 0.5, 0.47 및 $0.3kgCH_4-COD/kgVSS.day$로 반응조내 유리암모니아 농도가 $500mg-N/{\ell}$에서는 메탄균의 활성이 4%, 유리암모니아 농도가 $1000mg-N/{\ell}$에서는 메탄균의 활성이 40% 감소되었다. 이러한 결과로부터 유리암모니아 농도가 $500mg-N/{\ell}$ 이하에서는 반응조 미생물에 미치는 저해정도가 작은 것으로 판단된다. 한편 $1000mgVSS/{\ell}$ 이내의 휘발성 고형물질을 포함하는 폐수는 혐기성균에 의해 쉽게 분해되므로 UASB 반응조를 안정적으로 운영할 수 있다.

  • PDF

Isolation, Characterization, and Use for Plant Growth Promotion Under Salt Stress, of ACC Deaminase-Producing Halotolerant Bacteria Derived from Coastal Soil

  • Siddikee, M.A.;Chauhan, P.S.;Anandham, R.;Han, Gwang-Hyun;Sa, Tong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권11호
    • /
    • pp.1577-1584
    • /
    • 2010
  • In total, 140 halotolerant bacterial strains were isolated from both the soil of barren fields and the rhizosphere of six naturally growing halophytic plants in the vicinity of the Yellow Sea, near the city of Incheon in the Republic of Korea. All of these strains were characterized for multiple plant growth promoting traits, such as the production of indole acetic acid (IAA), nitrogen fixation, phosphorus (P) and zinc (Zn) solubilization, thiosulfate ($S_2O_3$) oxidation, the production of ammonia ($NH_3$), and the production of extracellular hydrolytic enzymes such as protease, chitinase, pectinase, cellulase, and lipase under in vitro conditions. From the original 140 strains tested, on the basis of the latter tests for plant growth promotional activity, 36 were selected for further examination. These 36 halotolerant bacterial strains were then tested for 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. Twenty-five of these were found to be positive, and to be exhibiting significantly varying levels of activity. 16S rRNA gene sequencing analyses of the 36 halotolerant strains showed that they belong to 10 different bacterial genera: Bacillus, Brevibacterium, Planococcus, Zhihengliuella, Halomonas, Exiguobacterium, Oceanimonas, Corynebacterium, Arthrobacter, and Micrococcus. Inoculation of the 14 halotolerant bacterial strains to ameliorate salt stress (150 mM NaCl) in canola plants produced an increase in root length of between 5.2% and 47.8%, and dry weight of between 16.2% and 43%, in comparison with the uninoculated positive controls. In particular, three of the bacteria, Brevibacterium epidermidis RS15, Micrococcus yunnanensis RS222, and Bacillus aryabhattai RS341, all showed more than 40% increase in root elongation and dry weight when compared with uninoculated salt-stressed canola seedlings. These results indicate that certain halotolerant bacteria, isolated from coastal soils, have a real potential to enhance plant growth under saline stress, through the reduction of ethylene production via ACC deaminase activity.

Pyruvic Acid 생산 미생물과 연결된 Pyruvic Acid의 Tryptophan으로의 효소적 전환 (Enzymatic Conversion of Pyruvic Acid to Tryptophan tinted to Pyruvic Acid-Producing Microorganism)

  • 정남현;방원기
    • 한국미생물·생명공학회지
    • /
    • 제15권5호
    • /
    • pp.334-339
    • /
    • 1987
  • Pyruvic acid 생산 미생물로부터 얻어진 pyruvic acid의 tryptophan으로의 효소적 전환을 조사하였다. 발광 미생물인 Beneckea sp.가 pyruvic acid의 생산에 사용되었다. pyruvic acid, indole과 ammonia로 부터 tryptophan을 합성하는 tryptophanase의 효소원으로 Enterobacter aerogenes ATCC10031의 균체가 반응용액에 직접 사용되었다. Tryptophan의 생산량을 증가시키기 위해, 비이온성 계면활성제와 비 수용성 유기용매가 indole의 저장소로 사용되었다. 비이온성 계면활성제의 경우 triton X-100은 매우 효과적이였다. 1.5%의 triton X-100 이 사용되었을 때, 37$^{\circ}C$에서 48시간 동안에 7.7g/$\ell$의 tryptophan이 생산되었다. 비수용성 유기용매의 경우 10%의 benzene이 사용되었을 때, 37$^{\circ}C$에서 48시간 동안에 8.7g/$\ell$의 tryptophan이 생산되었다. 이 tryptophan의 양은 indole과 pyruvic acid를 기준으로 각각 48%와 36%의 전환율에 해당한다.

  • PDF

Application of lactic acid bacteria producing antifungal substance and carboxylesterase on whole crop rice silage with different dry matter

  • Lee, Seong Shin;Paradhipta, Dimas Hand Vidya;Lee, Hyuk Jun;Joo, Young Ho;Noh, Hyeon Tak;Choi, Jeong Seok;Ji, Keum Bae;Kim, Sam Churl
    • Animal Bioscience
    • /
    • 제34권6호
    • /
    • pp.1029-1037
    • /
    • 2021
  • Objective: This study was conducted to investigate effects of antifungal substance and carboxylesterase-producing inoculant on fermentation indices and rumen degradation kinetics of whole crop rice (WCR) silage ensiled at different dry matter (DM) contents. Methods: Dual-purpose inoculants, Lactobacillus brevis 5M2 and Lactobacillus buchneri 6M1, confirmed both activities of antifungal and carboxylesterase in the previous study. The WCR at mature stage was chopped, and then wilted to obtain three different DM contents consisting of 35.4%, 43.6%, and 51.5%. All WCR forages were applied distilled water (CON) or mixed inoculants with 1:1 ratio at 1×105 colony forming unit/g (INO), and ensiled into 20 L mini silo (5 kg) in quadruplicates for 108 d. Results: The INO silages had lower lactate (p<0.001) and butyrate (p = 0.022) with higher acetate (p<0.001) and propionate (p<0.001) than those of CON silages. Ammonia-N (p<0.001), lactate (tendency; p = 0.068), acetate (p = 0.030), and butyrate (p<0.001) concentrations of INO silages decreased linearly with increasing DM content of WCR forage. The INO silages presented higher lactic acid bacteria (p<0.001) with lower molds (p<0.001) than those of CON silages. Yeasts (p = 0.042) and molds (p = 0.046) of WCR silages decreased linearly with increasing DM content of WCR forage. In the rumen, INO silages had higher the total degradable fraction (p<0.001), total volatile fatty acid (tendency; p = 0.097), and acetate (p = 0.007), but lower the fractional degradation rate (p = 0.011) and propionate (p<0.001) than those of CON silage. The total degradable fraction (p<0.001), total volatile fatty acid (p = 0.001), iso-butyrate (p = 0.036), and valerate (p = 0.008) decreased linearly with increasing DM content of WCR forage, while the lag phase (p<0.001) was increased linearly. Conclusion: This study concluded that application of dual-purpose inoculants on WCR silage confirmed antifungal and carboxylesterase activities by inhibiting mold and improving rumen digestibility, while increase of wilting times decreased organic acids production and rumen digestibility.

생물방제균 Bfacillus subtilis YB-70의 외부 Urease 유전자 도입과 길항력 증강

  • 최종규;김용수;이은탁;김상달
    • 한국미생물·생명공학회지
    • /
    • 제25권1호
    • /
    • pp.30-36
    • /
    • 1997
  • To genetically breed powerful multifunctional antagonistic bacteria, the urease gene of alkalophilic Bacillus pasteurii was transferred into Bacillus subtilis YB-70 which had been selected as a powerful biocontrol agent against root-rotting fungus Fusarium solani. Urease gene was inserted into the HindIII site of pGB215-110 and designated pGU266. The plasmid pGU266 containing urease gene was introduced into the B. subtilis YB-70 by alkali cation transformation system and the urease gene was very stably expressed in the transformant of B. subtilis YB-70(pGU266). The optimal conditions for the transfomation were also evaluated. From the in vitro antibiosis tests against F. solani, the antifungal activity of B. subtilis YB-70 containing urease gene was much efficient than that of the non-transformed strain. Genetic improvement of B. subtilis YB-70 by transfer of urease gene for the efficient control seemed to be responsible for enhanced plant growth and biocontrol efficacy by combining its astibiotic action and ammonia producing ability.

  • PDF

Effect of γ-Aminobutyric Acid (GABA) Producing Bacteria on In vitro Rumen Fermentation, Biogenic Amine Production and Anti-oxidation Using Corn Meal as Substrate

  • Ku, Bum Seung;Mamuad, Lovelia L.;Kim, Seon-Ho;Jeong, Chang Dae;Soriano, Alvin P.;Lee, Ho-Il;Nam, Ki-Chang;Ha, Jong K.;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권6호
    • /
    • pp.804-811
    • /
    • 2013
  • The effects and significance of ${\gamma}$-amino butyric acid (GABA) producing bacteria (GPB) on in vitro rumen fermentation and reduction of biogenic amines (histamine, methylamine, ethylamine, and tyramine) using corn meal as a substrate were determined. Ruminal samples collected from ruminally fistulated Holstein cows served as inoculum and corn was used as substrate at 2% dry matter (DM). Different inclusion rates of GPB and GABA were evaluated. After incubation, addition of GPB had no significant effect on in vitro fermentation pH and total gas production, but significantly increased the ammonia nitrogen ($NH_3$-N) concentration and reduced the total biogenic amines production (p<0.05). Furthermore, antioxidation activity was improved as indicated by the significantly higher concentration of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) among treated samples when compared to the control (p<0.05). Additionally, 0.2% GPB was established as the optimum inclusion level. Taken together, these results suggest the potential of utilizing GPB as feed additives to improve growth performance in ruminants by reducing biogenic amines and increasing anti-oxidation.