• Title/Summary/Keyword: Ammonia solution

Search Result 365, Processing Time 0.031 seconds

Corrosion Characteristics of St37.4 Carbon Steel for Ship Fuel Pipe with Ammonia Concentration (선박 연료배관용 St37.4 탄소강의 암모니아 농도에 따른 부식 특성)

  • Do-Bin, Lee;Seung-Jun, Lee
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.514-524
    • /
    • 2022
  • Carbon emissions from fuel consumption have been pointed by scientists as the cause of global warming. In particular, fossil fuels are known to emit more carbon when burned than other types of fuels. In this regard, International Maritime Organization has announced a regulation plan to reduce carbon dioxide emissions. Therefore, recently, Liquefied Natural Gas propulsion ships are responding to such carbon reduction regulation. However, from a long-term perspective, it is necessary to use carbon-free fuels such as hydrogen and ammonia. Nitrogen oxides might be generated during ammonia combustion. There is a possibility that incompletely burned ammonia is discharged. Therefore, rather than being used as a direct fuel, Ammonia is only used to reduce NOX such as urea solution in diesel vehicle Selective Catalyst Reduction. Currently, LPG vehicle fuel feed system studies have evaluated the durability of combustion injectors and fuel tanks in ammonia environment. However, few studies have been conducted to apply ammonia as a ship fuel. Therefore, this study aims to evaluate corrosion damage that might occur when ammonia is used as a propulsion fuel on ships.

Effect of the Physical Parameters and Alkalinity in the Ammonia Stripping (반응조의 물리적 인자와 알칼리도가 암모니아 탈기에 미치는 영향에 관한 연구)

  • An, Ju-Suk;Lim, Ji-Hye;Back, Ye-Ji;Chung, Tae-Young;Chung, Hyung-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.583-590
    • /
    • 2011
  • The effect of the physical parameters in the reactor (aeration depth, bubble size, and surface area) and the alkalinity of the solution on the ammonia stripping by bubbling were evaluated. When an airflow of 30 L/min was bubbled below the solution surface in the range 6-53 cm, the ammonia removal rate were observed to be the same regardless of the bubbling depths. At pH 10.0 and a temperature of $30^{\circ}C$, the average rate constant and the standard deviation were $0.178h^{-1}$ and 0.004. No appreciable changes in the ammonia removal rate were also observed with varying the bubble size and the air-contacting surface area. Alkalinity of the solution was found to affect the ammonia removal rate indirectly. This is expected because the pH of the solution would vary with dissolution of gaseous $CO_2$ by air bubbling. The real wastewaters from landfill site and domestic wastewater treatment plant were tested. In the case of domestic wastewater (pH = 7.1, alkalinity = 75 mg/L), the ammonia removal rate was poor even with the control of pH to 9.3. The raw landfill leachate (pH = 8.0, alkalinity = 6,525 mg/L), however, showed the appreciable removal rate with increasing pH during aeration. When the initial pH of the leachate was adjusted 9.4, the removal rate was significantly increased without changing the pH during aeration.

Comparison of efficiencies of converting urea solution to ammonia depending on active catalyst metals on TiO2 (타이타니아 담지 활성촉매에 따른 요소 수용액의 암모니아 전환 효율 비교)

  • Lee, Myung Sig;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.163-172
    • /
    • 2018
  • In this study, selective catalytic reductions (SCR) of NO commercial catalysts were used to investigate the effect of ammonia gasification from urea solution. The effects of catalytic chemical composition on the reaction temperature and space velocity were studied. $V_2O_5/TiO_2$ catalysts, which are widely used as SCR catalysts for removal of nitrogen oxides, have better ammonia formation compare to $TiO_2$ and $WO_3-V_2O_5/TiO_2$ catalysts. The $TiO_2$ catalyst not supporting the active metal was not affected by the space velocity as compared with the catalyst supporting $V_2O_5$ or $WO_3-V_2O_5$. The active metal supported catalysts decreased in the ammonia formation as the space velocity increased.

A Preliminary Study on the In-line Concentration Measurement of Absorbent Solution (흡수용액의 In-line 농도측정을 위한 기초연구)

  • 민병혁;황덕용;정시영;구기갑
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.2
    • /
    • pp.152-158
    • /
    • 2003
  • Titration method is one of the widely used methods for the concentration measurement of absorbent ammonia/water. However, this method is inconvenient because the solution should be extracted for the measurement. Moreover, significant error can be introduced by the evaporation of ammonia during the sampling and measuring procedure. In this study a reliable in-line concentration measurement method was proposed. To prove the validity of the concept, a measuring apparatus was designed, built, and tested with water. It is found that the location of flow inlet and exit is important in the measurement accuracy. The flow inlet and exit located in the middle of the test cell showed the best result. By the error analysis, it is expected that the ammonia concentration can be measured within the error of $\pm$0.18% assuming the error of 0.1 K in temperature measurement and 0.1 g in weight measurement.

Dynamic Model of a Vertical Tube Absorber for Ammonia/water Absorption Refrigerators (암모니아/물 흡수식 냉동기의 수직원관형 흡수기의 동적 모델)

  • 문현석;정은수;김병주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.844-853
    • /
    • 2002
  • A dynamic model which simulates the coupled heat and mass transfer within a vertical tube absorber was developed. The liquid film is a binary mixture of two components, and both of these components are present in the vapor phase. The pressure, concentration, temperature and mass flow rate of the vapor are obtained by assuming that the pressure is uniform within an absorber. The model was applied to an absorber for an ammonia/water absorption refrigerator. The transient behaviors of the pressure, the outlet temperature and the concentration of the solution and the cooling water outlet temperature on a step change at the absorber inlet of the cooling water temperature, the vapor mass flow rate and the concentration of the solution were shown.

Cycle Analysis of Diffusion Absorption Refrigerator (확산형 흡수식 냉장고의 사이클 해석)

  • 김선창;김영률;백종현;박승상
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.817-824
    • /
    • 2002
  • A diffusion absorption refrigerator is a heat-generated refrigeration system. It uses a three-component working fluid consisting of the refrigerant (ammonia), the absorbent (water) and the auxiliary gas (typically hydrogen). This system has no moving parts and the associated noise and vibration. In this study, the operating characteristics of diffusion absorption refrigerator are investigated through cycle modeling and simulation. System parameters considered in this study are the charged concentration of ammonia aqueous solution, the concentration difference between absorber inlet and outlet and the system pressure determined by the amount of auxiliary gas charged. It was found that there exists a critical value of concentration difference that maximizes the refrigerating capacity. And the lower the system pressure, the higher the refrigerating capacity.

Injury Symptom of Egg Plant Grown in a High pH Rockwool Amended with Ammonium Phosphate (인산암모늄 처리 고산도 암면에서 자란 가지생육장해증상)

  • Kim, Yoo-Hak;Lee, Hyeong-Yong;Kim, Myung-Sook;Kang, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.975-977
    • /
    • 2010
  • Ammonium nitrogen is volatilized as ammonia at high pH soil. This study was conducted to observe an injury cause of egg plant grown in a high pH rockwool amended with ammonium phosphate. The etiolation symptom (yellowing) was appeared on veins of a leaf but not in healthy root when nutrient solution containing ammonium phosphate in addition to essential elements was applied in a top soil of which pH was 7.8. However, the same symptom did not appeared in the egg plant from the top soil in which the nutrition solution containing potassium phosphate instead of ammonium phosphate was applied. pHs were similar between these two different solutions. This revealed that the injury was caused by ammonia gas.

Variation of the CO2 Capture Reaction by Ammonia Solution with Temperature (온도에 따른 암모니아 용액에 의한 CO2 포집 반응의 변화 양상)

  • Kim, Soo-Yeon;Choi, Ye-Seul;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.896-904
    • /
    • 2011
  • The features of the capture reaction of $CO_2$ by ammonia solution have been investigated along with the effect of temperature on the reaction based upon computer program-utilizing calculation and thermodynamic estimation. The stable region of $CO{_3}^{2-}$ was observed to increase with temperature and the change of the stable region of $CO{_3}^{2-}$ with temperature was greater than the temperature variation of the stable region of other carbonate species. The distribution diagram for $NH_4{^+}-NH_3$ system was constructed and the rise of temperature resulted in the decrease of the stability of $NH_4{^+}$ ion, which was thought to be due to the endothermic nature of its acidic dissociation. Considering the introduction of $Ca^{2+}$ ion in the carbon capture reaction by $NH_4{^+}$, the temperature was observed to be important in the determination of the order of reaction between carbonate ion and these cations. The removal process of $CO_2$ gas by ammonia solution was presumed to occur in open system and the temperature variations of the concentration of carbonate system species along with their total concentration were calculated for the proper control and design of the real process.

Modified Ammonia Removal Model Based on Equilibrium and Mass Transfer Principles

  • Shanableh, A.;Imteaz, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1920-1926
    • /
    • 2010
  • Yoon et $al.^1$ presented an approximate mathmatical model to describe ammonia removal from an experimental batch reactor system with gaseous headspace. The development of the model was initially based on assuming instantaneous equilibrium between ammonia in the aqueous and gas phases. In the model, a "saturation factor, $\beta$" was defined as a constant and used to check whether the equilibrium assumption was appropriate. The authors used the trends established by the estimated $\beta$ values to conclude that the equilibrium assumption was not valid. The authors presented valuable experimental results obtained using a carefully designed system and the model used to analyze the results accounted for the following effects: speciation of ammonia between $NH_3$ and $NH^+_4$ as a function of pH; temperature dependence of the reactions constants; and air flow rate. In this article, an alternative model based on the exact solution of the governing mass-balance differential equations was developed and used to describe ammonia removal without relying on the use of the saturation factor. The modified model was also extended to mathematically describe the pH dependence of the ammonia removal rate, in addition to accounting for the speciation of ammonia, temperature dependence of reactions constants, and air flow rate. The modified model was used to extend the analysis of the original experimental data presented by Yoon et $al.^1$ and the results matched the theory in an excellent manner.

Electrochemical nitrate reduction using a cell divided by ion-exchange membrane

  • Lee, Jongkeun;Cha, Ho Young;Min, Kyung Jin;Cho, Jinwoo;Park, Ki Young
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.189-194
    • /
    • 2018
  • Electrochemical reduction of nitrate was studied using Zn, Cu and (Ir+Ru)-Ti cathodes and Pt/Ti anode in a cell divided by an ion exchange membrane. During electrolysis, effects of the different cathode types on operating parameters (i.e., voltage, temperature and pH), nitrate removal efficiency and by-products (i.e., nitrite and ammonia) formation were investigated. Ammonia oxidation rate in the presence of NaCl was also determined using the different ratios of hypochlorous acid to ammonia. The operating parameter values were similar for all types of cathode materials and were maintained relatively constant. Nitrate was well reduced and converted mostly to ammonia using Zn and Cu cathodes. Ammonia, produced as a by-product of nitrate reduction, was oxidized in the presence of NaCl in the electrochemical process and the oxidation performance was enhanced upon increasing the hypochlorous acid-to-ammonia ratio to 1.09:1. Zn and Cu cathodes promoted the nitrate reduction to ammonia and the produced ammonia was finally removed from solution by reacting with hypochlorite ions. Using Zn or Cu cathodes, instead of noble metal cathodes, in the electrochemical process can be an alternative technology for nitrate-containing wastewater treatment.