• 제목/요약/키워드: Ammonia slip

검색결과 34건 처리시간 0.024초

선박용 SCR 시스템에 대한 실험적 연구 (Experimental study on marine SCR system)

  • 남홍식;허재정;신동욱;노범석;류기탁;이윤형;강정구;이성우
    • 수산해양기술연구
    • /
    • 제56권2호
    • /
    • pp.183-192
    • /
    • 2020
  • This study conducted the experiment for the development of the low pressure type SCR system. The experimental equipment of SCR system was installed, which was widely used as the nitrogen oxides abatement system, and the demonstration experiment was conducted to see that it met the Tier III regulation according to the IMO NOx Technical Code. The SCR system demonstration experiment was divided into three stages: SCR system component operation test, engine parameter test by engine load, and NOx abatement performance and ammonia slip verification test. The final performance of the SCR system was verified through analysis of NOx abatement performance and ammonia slip test results for each load variation.

Development of a variable resistance-capacitance model with time delay for urea-SCR system

  • Feng, Tan;Lu, Lin
    • Environmental Engineering Research
    • /
    • 제20권2호
    • /
    • pp.155-161
    • /
    • 2015
  • Experimental research shows that the nitric oxides ($NO_X$) concentration track at the outlet of selective catalytic reduction (SCR) catalyst with a transient variation of Adblue dosage has a time delay and it features a characteristic of resistance-capacitance (RC). The phenomenon brings obstacles to get the simultaneously $NO_X$ expected to be reduced and equi-molar ammonia available to SCR reaction, which finally inhibits $NO_X$ conversion efficiency. Generally, engine loads change frequently, which triggers a rapid changing of Adblue dosage, and it aggravates the air quality that are caused by $NO_X$ emission and ammonia slip. In order to increase the conversion efficiency of $NO_X$ and avoid secondary pollution, the paper gives a comprehensive analysis of the SCR system and tells readers the key factors that affect time delay and RC characteristics. Accordingly, a map of time delay is established and a solution method for time constant and proportional constant is carried out. Finally, the paper accurately describes the input-output state relation of SCR system by using "variable RC model with time delay". The model can be used for a real-time correction of Adblue dosage, which can increase the conversion efficiency of $NO_X$ in SCR system and avoid secondary pollution forming. Obviously, the results of the work discover an avenue for the SCR control strategy.

망간계 금속산화물을 이용한 저온 선택적 촉매 환원 반응에서 NO2와 NH3 배출 (The Emission of NO2 and NH3 in Selective Catalytic Reduction over Manganese Oxide with NH3 at Low Temperature)

  • 김성수;홍성창
    • 공업화학
    • /
    • 제18권3호
    • /
    • pp.255-261
    • /
    • 2007
  • 망간계 금속산화물을 이용한 저온 선택적 촉매 환원 반응에 대하여 연구하였다. 망간계 금속산화물은 $200^{\circ}C$ 이하의 저온에서 우수한 탈질 특성을 보인다. 온도에 따른 $NH_3/NOx$ 몰비 변화 실험을 통하여 미반응 암모니아의 배출은 몰비가 증가하고 온도가 감소할수록 증가하였으며, $NO_2$의 발생은 반대의 현상을 보였다. $NO_2$는 NO가 촉매 표면에 흡착된 후 nitrate종으로 산화되어 생성되는 것으로 보인다. 촉매 표면에 생성된 nitrate종과 흡착된 암모니아가 반응하기 때문에 $NH_3/NOx$ 몰비 1.0 이상에서도 미반응 암모니아의 배출이 없었다. 담지된 금속산화물의 영향은 Zr은 산화상태를 증가시켜 $NO_2$의 배출이 증가하였으며, Ce를 첨가시킨 경우 $NO_2$ 발생량이 감소하였다. 그러나 금속산화물의 첨가는 전체적으로 NOx 전환율을 감소시켰다

Urea-SCR 분사시스템의 DeNOx 저감 성능 향상과 NH3 슬립저감을 위한 모델 기반 제어알고리즘 개발 및 구현 (The Development and Implementation of Model-based Control Algorithm of Urea-SCR Dosing System for Improving De-NOx Performance and Reducing NH3-slip)

  • 정수진;김우승;박정권;이호길;오세두
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.95-105
    • /
    • 2012
  • The selective catalytic reduction (SCR) system is a highly-effective aftertreatment device for NOx reduction of diesel engines. Generally, the ammonia ($NH_3$) was generated from reaction mechanism of SCR in the SCR system using the liquid urea as the reluctant. Therefore, the precise urea dosing control is a very important key for NOx and $NH_3$ slip reduction in the SCR system. This paper investigated NOx and $NH_3$ emission characteristics of urea-SCR dosing system based on model-based control algorithm in order to reduce NOx. In the map-based control algorithm, target amount of urea solution was determined by mass flow rate of exhaust gas obtained from engine rpm, torque and $O_2$ for feed-back control NOx concentration should be measured by NOx sensor. Moreover, this algorithm can not estimate $NH_3$ absorbed on the catalyst. Hence, the urea injection can be too rich or too lean. In this study, the model-based control algorithm was developed and evaluated on the numerical model describing physical and chemical phenomena in SCR system. One channel thermo-fluid model coupled with finely tuned chemical reaction model was applied to this control algorithm. The vehicle test was carried out by using map-based and model-based control algorithms in the NEDC mode in order to evaluate the performance of the model based control algorithm.

파일럿 규모 반응기에서 Hybrid SNCR-SCR 공정의 질소산화물 저감 특성 (DeNOx Characteristics of Hybrid SNCR-SCR Process in a Pilot Scale Flow Reactor)

  • 엄원현;유경선;김성준
    • Korean Chemical Engineering Research
    • /
    • 제49권1호
    • /
    • pp.89-94
    • /
    • 2011
  • 하이브리드 SNCR-SCR 공정의 질소산화물 저감특성을 파일럿 규모의 흐름반응기를 이용하여 고찰하였다. SNCR 공정의 질소산화물 저감효율은 $970^{\circ}C$에서 80% 수준이었으며 하이브리드 SNCR-SCR 공정은 NSR = 2.0, $940{^{\circ}C}$에서 92%의 저감율을 보였다. SNCR 단일 공정과 비교할 때, 하이브리드 SNCR-SCR 공정은 $940^{\circ}C$보다 낮은 저온영역에서 보다 효과적이었다. 암모니아 유출농도는 비교적 높은 공간속도조건에서 1 ppm 이하로 유지되었으며 요구되는 촉매양은 SCR 단일공정과 비교할 때 2/3 수준으로 감소하였다. 질소산화물 저감을 위한 하이브리드 SNCR-SCR 공정의 주요인자는 SNCR 공정에 분사되는 요소용액의 질소산화물에 대한 선택도와 생성되는 암모니아 농도로 조사되었다.

Urea 수용액의 배기가스 유동장내 분무 특성과 분무 균일도에 관한 연구 (A Study on the Characteristic and Droplet Uniformity of Spray Injection to Exhaust Gas Flow from Urea Solution Injector)

  • 오정모;차원심;김기범;이진하;이기형
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.83-89
    • /
    • 2011
  • Diesel engines can produce higher fuel efficiency and lower $CO_2$ emission, they are subject to ever more stringent emission regulation. However, there are two major emission concerns fo diesel engines like such as particulate matter (PM) and nitrogen oxides (NOx). Moreover, it is not easy to satisfy the regulations on the emission of NOx and PM, which are getting more strengthened. One of the solutions is to apply the new combustion concept using multistage injection such as HCCI and PCCI. The other solution is to apply after-treatment systems. For example, lean NOx trap catalyst, Urea-SCR and others have various advantages and disadvantages Especially, Urea-SCR system have advantages such as a high conversion efficiency and a wide operation conditions. Hence the key factor to implementation of Urea-SCR technology, good mixing of urea(Ammonia) and gas, reducing Ammonia slip. Urea mixer components are required to facilitate evaporation and mixing because the liquid state of urea poses significant barriers for evaporation, and the distance to mixer is the most critical that affect mixer performance. In this study, to find out the distance from injector to mixer and simulation factor, a laser diagnostics and high speed camera are used to analyze urea injector spray characteristics and to present a distribution of urea solution in transparent manifold In addition, Droplet Uniformity Index is calculated from the acquired images by using image processing method to clarify the distribution of spray.

NO REDUCTION PROPERTY OF Pt-V2O5-WO3/TiO2 CATALYST SUPPORTED ON PRD-66 CERAMIC FILTER

  • Kim, Young-Ae;Choi, Joo-Hong;Bak, Young-Cheol
    • Environmental Engineering Research
    • /
    • 제10권5호
    • /
    • pp.239-246
    • /
    • 2005
  • The effect of Pt addition over $V_2O_5-WO_3/TiO_2$ catalyst supported on PRO-66 was investigated for NO reduction in order to develop the catalytic filter working at low temperature. Catalytic filters, $Pt-V_2O_5-WO_3/TiO_2/PRD$, were prepared by co-impregnation of Pt, V, and W precursors on $TiO_2$-coated ceramic filter named PRD (PRD-66). Titania was coated onto the pore surface of the ceramic filter using a vacuum aided-dip coating method. The Pt-loaded catalytic filter shifted the optimum working temperature from $260-320^{\circ}C$(for the catalytic filter without Pt addition) to $190-240^{\circ}C$, reducing 700 ppm NO to achieve the $N_x$ slip concentration($N_x\;=\;NO+N_2O+NO_2+NH_3$) less than 20 ppm at the face velocity of 2 cm/s. $Pt-V_2O_5-WO_3/TiO_2$ supported on PRD showed the similar catalytic activity for NO reduction with that supported on SiC filter as reported in a previous study, which implies the ceramic filter itself has no considerable interaction for the catalytic activity.

화력발전소 NOx 제거를 위한 SCR 촉매 특성 (Characteristics of SCR-Catalytic with de-NOx System in Thermal Power plants)

  • 고승재;김지현;김미정;조연배;박영구
    • 한국응용과학기술학회지
    • /
    • 제30권3호
    • /
    • pp.451-460
    • /
    • 2013
  • NOx from the thermal power plants are NO and $NO_2$. This work investigated the chemical/physical characteristics and SCR efficiency of newly prepared catalysts including tungsten ($WO_3$), molybdenum ($MoO_3$) and antimony ($SbO_3$) based on vanadia($V_2O_5$) over titania($TiO_2$). As a result of the examination, the surface area of the catalysts promoted with additional metals was larger and the de-NOx efficiency also was enhanced with temperature. The most efficient catalytst was $V_2O_5/TiO_2-WO_3$(10%) at $200^{\circ}C$. Such a high efficiency could contribute to reduce the ammonia slip.

An Experiment of SCR System On-board Ship

  • Choi Jae-Sung;Cho Kwon-Hae;Lee Jae-Hyun;Lee Jin-Wook;Kim Jeong-Gon;Jang Sung-Hwan;Yang Hee-Sung;Ko Jun-Ho;Park Ki-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권3호
    • /
    • pp.306-312
    • /
    • 2005
  • IMO $NO_x$ levels are generally possible to meet by means of primary on-engine measures. Further significant follow-on reductions are likely to require a secondary after-treatment technique. SCR(Selective Catalytic Reduction) technology is used almost exclusively for $NO_x$ removal in stationary combustion systems. In order to develop a practical SCR system for marine application on board ship, a primary SCR system using urea was made. The SCR system was set up on the ship, 'HANNARA' as a test vessel. employed a two-stroke cycle diesel engine as main propulsion, which is a training ship of Korea Maritime University. The purpose of this paper is to report the results about the basic effects of the below system parameters, The degree of $NO_x$ removal depends on some parameters, such as the amount of urea solution added, space velocity, reaction gas temperature and activity of catalyst.

냉각수 순환 방식 가열원 형상에 따른 요소수 해동 특성에 관한 수치적 연구 (Numerical Investigation of the Urea Melting and Heat Transfer Characteristics with Three Different Types of Coolant Heaters)

  • 이승엽;김만영;이천환;박윤범
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.125-132
    • /
    • 2012
  • Urea-SCR system, which converts nitrogen oxides to nitrogen and water in the presence of a reducing agent, usually AdBlue urea solution, is known as one of the powerful NOx reduction systems for mobile as well as stationary applications. For its consistent and reliable operation in mobile applications, such various problems as transient injection, ammonia slip, and freezing in cold weather have to be resolved. In this work, therefore, numerical study on three-dimensional unsteady heating problems were analyzed to understand the melting and heat transfer characteristics such as urea liquid volume fraction, temperature profiles and generated natural convection behavior in urea solution by using the commercial software Fluent 6.3. After validating by comparing numerical and experimental data with pure gallium melting phenomena, numerical experiment for urea melting is conducted with three different coolant heating models named CH1, 2, and 3, respectively. Finally, it can be found that the CH3 model, in which more coolant is concentrated on the lower part of the urea tank, has relatively better melting capability than others in terms of urea quantity of $1{\ell}$ for start-up schedule.