• Title/Summary/Keyword: Ammonia loading rates

Search Result 33, Processing Time 0.027 seconds

Nitrification Efficiency in Fixed Film Biofilters using Different Filter Media in Simulated Seawater Aquarium System

  • Peng, Lei;Jo, Jae-Yoon
    • Journal of Aquaculture
    • /
    • v.16 no.4
    • /
    • pp.203-209
    • /
    • 2003
  • Nitrification efficiency of fixed film biofilters with sand, loess bead, and styrofoam bead in biofilter columns of 1-m height and 30 cm width was studied. Synthetic wastewater was continuously supplied to the culture tank to maintain total ammonia nitrogen (TAN) concentration in the inflow water at around 8 mg/L. The hydraulic loading rate was set at 200 ㎥/$m^2$/day. TAN conversion was stabilized after about 90 day conditioning for all the selected filter media but with net accumulations of nitrite. On the volumetric basis, conversion rates of TAN and nitrite were the highest in styrofoam bead filter. Mean volumetric TAN conversion rates in the final samples were 682, 269, and 79 g TAN/㎥/day in the styrofoam bead, sand and loess bead filters, respectively. Low gravity and cost of styrofoam bead render the handling easier and more cost-effective.

Effective Total Nitrogen (TN) Removal in Partially Aerated Biological Aerated Filter (BAF) with Dual Size Sand Media (다중 모래 여재를 적용한 부분 포기 Biological Aerated Filter의 효과적인 Total Nitrogen (TN) 제거)

  • Kang, Jeong-Hee;Song, Ji-Hyeon;Ha, Jeong-Hyub
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.1
    • /
    • pp.5-14
    • /
    • 2010
  • A pilot-scale biological aerated filter (BAF) was operated with an anaerobic, anoxic and oxic zone at $23{\pm}1^{\circ}C$. The influent sCOD and total nitrogen concentrations in the feedwater were approximately 250 mg/L and 35 mg N/L, respectively. sCOD removal at optimum hydraulic retention time (HRT) of 3 hours with recirculation rates of 100, 200 and 300% in the column was more than 96%. Total nitrogen removal was consistently above 80% for 4 and 6 hours HRT at 300% recirculation. For 3 hours HRT and 300% recirculation, total nitrogen removal was approximately 79%. Based on fitting results, the kinetic parameter values on nitrification and denitrification show that as recirculation rates increased, the rate of ammonia and nitrate transformation increased. The ammonium loading rates for maximum ammonium removed were 0.15 and 0.19 kg $NH_3$-N/$m^3$-day for 100% and 200% recirculation, respectively. The experimental results demonstrated that the BAF can be operated at an HRT of 3 hours with 200 - 300% recirculation rates with more than 96 % removal of sCOD and ammonium, and at least 75% removal of total nitrogen.

Recycling Water Treatment of Aquaculture by Using Trickling Filter Process (살수여상공법을 이용한 양어장 순환수처리)

  • KIM Jeong-Sook;LEE Byung-Hun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.2
    • /
    • pp.230-237
    • /
    • 1996
  • The objective of the present study is to evaluate organic removal efficiencies, nitrogen removal efficiencies, kinetic constant, sludge production rates, oxygen requirements, and optimum treatment renditions for recycling water treatment of aquaculture by using a trickling filter process. When the loading rates were $0.500\~0.082kg\;COD/m^3/day$ and $0.271\~0.044kg\;NH_4^+-N/m^3/day$, SCOD and ammonia removal efficiencies were $74.5\~84.0\%$ and $43.7\~61.8\%$, respectively. The maximum removal rate of ammonia was 119.5 mg/L/day. Observed cell yield coefficient in the trickling filter reactor was 0.572 kg VSS/kg $BOD_{rem}$. When the hydraulic loading rate was $6.712\~40.341m^3/m^2/day$, oxygen uptake rate was $1.33\~7.22\;mg\;O_2/L/hr$.

  • PDF

Characteristics and Biological Kinetics of Nitrogen Removal in Wastewater using Anoxic-RBC Process (무산소-RBC 공정을 이용한 질소제거 특성 및 동력학적 인자 도출)

  • 최명섭;손인식
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1085-1093
    • /
    • 2003
  • This study was conducted to investigate anoxic-RBC (rotating biological contactor) and its application in advanced municipal wastewater treatment process to remove biologically organics and ammonia nitrogen. Effluent COD and nitrogen concentration increased as the increase of volumetric loading rate. But, the concentration changes of NO$_2$$\^$-/ -N and NO$_3$$\^$-/ -N were little, as compared to COD and NH$_4$$\^$+/ -N. When the volumetric loading rate increased, COD removal efficiency and nitrification appeared very high as 96.7∼98.8% and 92.5∼98.8%, respectively. However, denitrification rate decreased to 76.2∼88.0%. These results showed that the change of volumetric loading rate affected to the denitrification rate more than COD removal efficiency or nitrification rate. The surface loading rates applied to RBC were 0.13~6.0lg COD/㎡-day and 0.312∼1.677g NH$_4$$\^$+/-N㎡-day and they were increased as the increase of volumetric loading rate. However, the nitrification rate showed higher than 90%. The thickness of the biofilm in RBC was 0.130 ∼0.141mm and the density of biofilm was 79.62∼83.78mg/㎤. They were increased as surface loading rate increased. From batch kinetic tests, the k$\_$maxH/ and k$\_$maxN/ were obtained as 1.586 g C/g VSS-day, and 0.276 g N/g VSS-day, respectively. Kinetic constants of denitrifer in anoxic reactor, Y, k$\_$e/, K$\_$s/, and k were 0.678 mg VSS/mg N, 0.0032 day$\^$-1/, 29.0 mg N/l , and 0.108 day$\^$-l/, respectively. P and K$\_$s/, values of nitrification and organics removal in RBC were 0.556 g N/㎡-day and 18.71 g COD/㎡-day, respectively.

Wastewater Utilization: A Place for Managed Wetlands - Review -

  • Humenik, F.J.;Szogi, A.A.;Hunt, P.G.;Broome, S.;Rice, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.629-632
    • /
    • 1999
  • Constructed wetlands are being used for the removal of nutrients from livestock wastewater. However, natural vegetation typically used in constructed wetlands does not have marketable value. As an alternative, agronomic plants grown under flooded or saturated soil conditions that promote denitrification can be used. Studies on constructed wetlands for swine wastewater were conducted in wetland cells that contained either natural wetland plants or a combination of soybeans and rice for two years with the objective of maximum nitrogen reduction to minimize the amount of land required for terminal treatment. Three systems, of two 3.6 by 33.5 m wetland cells connected in series were used; two systems each contained a different combination of emergent wetland vegetation: rush/bulrush (system 1) and bur-reed/cattail (system 2). The third system contained soybean (Glycine max) in saturated-soil-culture (SSC) in the first cell, and flooded rice (Oryza sativa) in the second cell. Nitrogen (N) loading rates of 3 and $10kg\;ha^{-1}\;day^{-1}$ were used in the first and second years, respectively. These loading rates were obtained by mixing swine lagoon liquid with fresh water before it was applied to the wetland. The nutrient removal efficiency was similar in the rush/bulrush, bur-reed/cattails and agronomic plant systems. Mean mass removal of N was 94 % at the loading rate of $3kg\;N\;ha^{-1}\;day^{-1}$ and decreased to 71% at the higher rate of $10kg\;N\;ha^{-1}\;day^{-1}$. The two years means for above-ground dry matter production for rush/bulrushes and bur-reed/cattails was l2 and $33Mg\;ha^{-1}$, respectively. Flooded rice yield was $4.5Mg\;ha^{-1}$ and soybean grown in saturation culture yielded $2.8Mg\;ha^{-1}$. Additionally, the performance of seven soybean cultivars using SSC in constructed wetlands with swine wastewater as the water source was evaluated for two years, The cultivar Young had the highest yield with 4.0 and $2.8Mg\;ha^{-1}$ in each year, This indicated that production of acceptable soybean yields in constructed wetlands seems feasible with SSC using swine lagoon liquid. Two microcosms studies were established to further investigate the management of constructed wetlands. In the first microcosm experiment, the effects of swine lagoon liquid on the growth of wetland plants at half (about 175 mg/l ammonia) and full strength (about 350 mg/l ammonia) was investigated. It was concluded that wetland plants can grow well in at least half strength lagoon liquid. In the second microcosm experiment, sequencing nitrification-wetland treatments was studied. When nitrified lagoon liquid was added in batch applications ($48kg\;N\;ha^{-1}\;day^{-1}$) to wetland microcosms the nitrogen removal rate was four to five times higher than when non-nitrified lagoon liquid was added. Wetland microcosms with plants were more effective than those with bare soil. These results suggest that vegetated wetlands with nitrification pretreatment are viable treatment systems for removal of large quantities of nitrogen from swine lagoon liquid.

Effects of Pre-aeration on the Anaerobic Digestion of Sewage Sludge

  • Ahn, Young-Mi;Wi, Jun;Park, Jin-Kyu;Higuchi, Sotaro;Lee, Nam-Hoon
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.59-66
    • /
    • 2014
  • The aim of this study was to assess the effect of pre-aeration on sludge solubilization and the behaviors of nitrogen, dissolved sulfide, sulfate, and siloxane. The results of this study showed that soluble chemical oxygen demand in sewage sludge could be increased through pre-aeration. The pre-aeration process resulted in a higher methane yield compared to the anaerobic condition (blank). The pre-aeration of sewage sludge, therefore, was shown to be an effective method for enhancing the digestibility of the sewage sludge. In addition, this result confirms that the pre-aeration of sewage sludge prior to its anaerobic digestion accelerates the growth of methanogenic bacteria. Removal rates for $NH_3$-N and T-N increased simultaneously during pre-aeration, indicating simultaneous nitrification and denitrification. The siloxane concentration in sewage sludge decreased by 40% after 96 hr of pre-aeration; in contrast, the sulfide concentration in sewage sludge did not change. Therefore, pre-aeration can be employed as an efficient treatment option to achieve higher methane yield and lower siloxane concentration in sewage sludge. In addition, reduction of nitrogen loading by pre-aeration can reduce operating costs to achieve better effluent water quality in wastewater treatment plant and benefit the anaerobic process by minimizing the toxic effect of ammonia.

Reaction Characteristics of Piggery Wastewater for Biological Nutrient Removal (생물학적 영양염류 제거를 위한 돈사폐수의 반응 특성)

  • 한동준;류재근;임연택;임재명
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.44-56
    • /
    • 1998
  • This study was performed to investigate the reaction characteristics of piggery wastewater for biological nutrient removal. The reaction characteristics were discussed the fraction of organics, the behavior of nitrogen, nitrification, denitrification, and the behavior of phosphorus. The fraction of readily biodegradable soluble COD was 11-12 percent. The ammonia nitrogen was removed via stripping, nitrification, autotrophic cell synthesis, and heterotrophic cell synthesis. The removal percents by each step were 12.1%, 68.9%, 15.0%, and 4.0%, respectively. Nitrification inhibition of piggery wastewater was found to occur at an influent volumetric loading rate over 0.2 NH$_{3}$-N kg/m$^{3}$/d. Denitrification rates were the highest in the raw wastewater and the lowest in the anaerobic effluent. The denitritation of piggery wastewater came out to be possible, and the rate of organic carbon consumption decreased about 10 percent. The phosphorus removed was released in the form of ortho-p in the aerobic fixed biofilm reactor, it was caused by autooxidation. The synthesis and release of phosphorus were related to the ORP and the boundary value for the phase change was about 170mV. In the synthesis phase, the phosphorus removal rate per COD removed was 0.023mgP$_{syn}$/mgCOD$_{rem}$. The phosphorus contents of the microorganism were 4.3-6.0% on a dry weight basis.

  • PDF

Effects of Rotational Speed and Hydraulic Residence Time on the Ammonia Removal of a Rotating Biological Contactor (RBC) (회전속도와 수리학적 체류시간이 회전원판식(Rotating Biological Contactor;RBC) 여과조의 암모니아 제거에 미치는 영향)

  • 오승용;조재윤;김종만
    • Journal of Aquaculture
    • /
    • v.16 no.3
    • /
    • pp.142-150
    • /
    • 2003
  • Performance of a biological filter, the rotating biological contactor (RBC), is affected by rotational speed and hydraulic residence time (HRT). A RBC with a disc diameter of 62 cm, total surface area of 48.28 $m^2$, volume of 0.34 ㎥, and submergence ratio of 35.4% was tested for the combinations of five rotational speeds (1, 2, 3, 4 & 5 rpm) and three HRT (0.5, 1.0 & 2.0 hr) to find out the maximum removal efficiencies of total ammonia nitrogen (TAN) and nitrite nitrogen of a simulated recirculating aquaculture system. Ammonia loading rate in the system was 25 g of TAN/ ㎥. day. Removal efficiencies were checked when TAN concentrations in the system stabilized for 3 days in each treatment. The concentration of TAN in the system decreased with increasing rotational speed of the RBC up to 4 rpm in all HRT (P<0.05). At the rotational speed of 5 rpm, the efficiencies decreased in all HRT (P<0.05). When the rotational speeds were 1, 2, 3, 4, and 5 rpm, TAN concentrations in the system were 1.35, 0.94, 0.69, 0.66, and 0.76 mg/L at the 0.5 hr HRT, 2.86, 1.18, 0.96, 0.87, and 1.11 mg/L at the 1.0 hr HRT, and 5.30, 2.44, 1.99, 1.77, and 2.01 mg/L at the 2.0 hr HRT, respectively. The TAN removal efficiencies of the RBC at the rotational speeds of 1, 2, 3, 4, and 5 rpm were 32.9, 49.5, 65.1, 72.9, and 62.9% in 0.5 hr HRT,33.1, 74.1, 87.1, 95.8, and 78.5% in 1.0 hr HRT, and 35.5, 76.7, 89.6, 97.0, and 85.5% in 2.0 hr HRT, respectively. TAN removal efficiency of RBC per pass increased with increasing HRT. However, TAN concentration in the system also increased. The best operating condition among the treatments was obtained at the treatment of 0.5 hr HRT and 4 rpm (P<0.05). The TAN concentration was 0.66 mg/L. Concentrations of nitrite nitrogen (NO$_2$$^{[-10]}$ -N) in the system decreased with increasing rotational speed in all HRT while that in the system increased with increasing HRT in all rotational speeds. The ranges of NO$_2$$^{[-10]}$ -N concentrations at HRT of 0.5, 1.0, and 2.0 hr in the system were 0.26~0.32, 0.31~0.56, and 0.43~l.45 mg/L, respectively. The ranges of daily removal rates of TAN in this system were 20.03~23.0 g TAN/㎥ㆍday and those of nitrite nitrogen were 19.65~30.25 g NO$_2$$^{[-10]}$ -N/㎥ㆍday.

Anaerobic Biotreatment of Animal Manure - A review of current knowledge and direction for future research -

  • Hong, Jihyung
    • Journal of Animal Environmental Science
    • /
    • v.11 no.2
    • /
    • pp.97-102
    • /
    • 2005
  • Anaerobic decomposition is one of the most common processes in nature and has been extensively used in waste and wastewater treatment for several centuries. New applications and system modifications continue to be adapted making the process either more effective, less expensive, or suited to the particular waste in question and the operation to which it is to be applied. Animal manure is a highly biodegradable organic material and will naturally undergo anaerobic fermentation, resulting in release of noxious odors, such as in manure storage pits. Depending on the presence or absence of oxygen in the manure, biological treatment process may be either aerobic or anaerobic. Under anaerobic conditions, bacteria carry on fermentative metabolisms to break down the complex organic substances into simpler organic acids and then convert them to ultimately formed methane and carbon dioxide. Anaerobic biological systems for animal manure treatment include anaerobic lagoons and anaerobic digesters. Methane and carbon dioxide are the principal end products of controlled anaerobic digestion. These two gases are collectively called biogas. The biogas contains $60\~70\%$ methane and can be used directly as a fuel for heating or electrical power generation. Trace amounts of ammonia and hydrogen sulfide ($100\~300\;ppm$) are always present in the biogas stream. Anaerobic lagoons have found widespread application in the treatment of animal manure because of their low initial costs, ease of operation and convenience of loading by gravity flow from the animal buildings. The main disadvantage is the release of odors from the open surfaces of the lagoons, especially during the spring warm-up or if the lagoons are overloaded. However, if the lagoons are covered and gases are collected, the odor problems can be solved and the methane collected can be used as a fuel. Anaerobic digesters are air-tight, enclosed vessels and are used to digest manure in a well-controlled environment, thus resulting in higher digestion rates and smaller space requirements than anaerobic lagoons. Anaerobic digesters are usually heated and mixed to maximize treatment efficiency and biogas production. The objective of this work was to review a current anaerobic biological treatment of animal manure for effective new technologies in the future.

  • PDF

Bacterial Degradation of Monoethanolamine (생물학적 방법에 의한 Monoethanolamine의 분해 연구)

  • Hyun, Jun-Taek;Rhee, In-Hyoung;Kwon, Sung-Hyun;Kim, Dong-Jin;Cho, Dae-Chul
    • KSBB Journal
    • /
    • v.22 no.3
    • /
    • pp.157-161
    • /
    • 2007
  • This study is to investigate the biological degradation and the characteristics of MEA, a pH regulator to be put in the cooling water circulation system for power plants, loading to elevate concentrations of COD and N when eluted into the water environment. MEA, $NH_4^+$ and CODcr were monitored in flask cultures and in a batch aerator. MEA was found to be biologically degradable, producing substantial amount of ammonia (max. 78.1%) in a form of $NH_4^+$ and other carboneous intermediates. The degradation reaction rates were similar one another over all MEA concentrations tested as the activated sludge (microbial consortium) was acclimated to MEA with the gradual and stepwise increase in MEA input into the batch aerator. Also, MLVSS kept increasing with increasing MEA input. The COD-based degradation reaction order was determined to be 1.